“Cell Press Selections”是由Cell出版社推出的一份推荐文章集合手册,主要介绍某个生命科学研究领域最新的进展及突出成果。相关特辑内容包括研究论文,评论性文章以及snapshots,涉及了同一领域的方方面面,更为重要的是这些文章由赞助商赞助,可以免费获取。
最新特辑大部分内容来自Cell Stem Cell,聚集于干细胞基础研究的临床转化,主要包括多篇成果论文及一篇干细胞治疗前景展望文章,和一篇帕金森症临床前诊断的新进展。
在这篇展望文章中,作者指出虽然干细胞具有极强的自我更新能力,在临床上也是一种新颖的治疗方式,但是除了造血干细胞HSC移植,其它干细胞治疗方式都还处于实验室阶段。近年来也有一些未经证实的治疗手段在临床实验标准之外被广泛应用,这严重威胁了干细胞的临床应用,因此科学家们都在加紧研究,期望通过突破技术和理论上的障碍,使干细胞治疗方法发挥其应有的作用。
来自瑞典隆德大学的研究人员在一项研究(Human ESC-Derived Dopamine Neurons Show Similar Preclinical Efficacy and Potency to Fetal Neurons when Grafted in a Rat Model of Parkinson’s Disease)中为人类胚胎干细胞源性多巴胺神经元从基础研究到临床上的应用提供了重要的临床前证据,研究表明利用胚胎干细胞技术,将帮助人们更有效地替换在相关疾病中死亡的大脑细胞,如帕金森症等。
帕金森病患者主要是由于脑内多巴胺能神经元退化,而多巴胺能神经元是维持正常运动功能的关键,这种患者往往存在严重的运动平衡障碍问题。标准的治疗包括左旋多巴,这种药物能代替多巴胺发挥作用,但也存在副作用。细胞治疗的目的是用取自胚胎大脑或干细胞分化出多巴胺细胞补充丢失的神经元。
在这篇文章中,研究人员在一个帕金森症大鼠模型中完成了一项人类胚胎干细胞源性中脑多巴胺神经元综合性临床前评估,发现通过临床MRI和PET成像技术可以维持长期大鼠存活,并证明了这种方法能产生与人类胎儿多巴胺神经元相似的作用。这为有效评估人类胚胎干细胞在这方面的作用提供了重要资料。这一发现为人类胚胎干细胞源性多巴胺神经元从基础研究到临床上的应用提供了重要的临床前证据,在脑部利用胚胎干细胞技术,将帮助人们更有效地替换在相关疾病中死亡的大脑细胞,如帕金森症等。
另外一篇:Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors Remyelinate the Brain and Rescue Behavioral Deficits following Radiation 则通过对大鼠进行临床前研究,开发了一种新方法,可以将人类干细胞转变成为修复大脑损伤的细胞。
同时干细胞对于一些罕见病也有了一些临床证据,如Sustained Mobilization of Endogenous Neural Progenitors Delays Disease Progression in a Transgenic Model of Huntington’s Disease 这篇文章就报道了亨廷顿疾病的干细胞研究进展。
亨廷顿疾病是一种神经退化疾病,这类疾病的部分特征是纹状体多棘投射神经元减少(MSNs)。一组研究人员通过脑室内注射带有BDNF和noggin的腺病毒,发现引发了新纹状体中新神经元的产生。单次脑室内注射AAV4-BDNF和AAV4-noggin腺病毒能引发长期募集新的MSNs,而这种反应不管在野生型小鼠还是亨廷顿动物模型R6/2中都是一致的。直接BDNF和noggin蛋白处理与脑室内注射AAV4-BDNF和AAV4-noggin腺病毒的结果是一致的,也能活化招募室管膜下前体细胞从而形成新的MSNs,这些细胞进一步成熟整合进入神经环路中。更重要的是,AAV4-BDNF/noggin处理的R6/2 小鼠表现出运动功能衰退得到缓解,存活进一步增加。
此外来自明尼苏达大学医学院的华人研究组利用大动物模型证明了hiPSC分化细胞在心脏修复方面的巨大潜力。
他们利用了一种急性心肌梗死猪模型(MI),分析hiPSC分化得到的心肌细胞,内皮细胞,和平滑肌细胞,如果结合带有胰岛素生长因子IGF微球的三维纤维蛋白贴剂,最终效果如何。结果他们发现这种三系细胞移植方法能改善左室功能,心肌代谢,小动脉密度,同时减少心肌梗死面积,心室壁压力和无诱导室性心律失常凋亡。这一在大动物模型中完成的研究指出未来hiPSC分化细胞在心脏修复方面的巨大潜力。
美国科学家首次利用干细胞培育出具有完整血管网络的肺类器官。这些“迷你”肺与人类肺部的发育过程高度相似。这项发表于《细胞》杂志的最新成果,不仅揭开了人类早期发育的奥秘,也为构建肠道和结肠等其他血管化器官......
在受伤后,一些涡虫几乎可以再生体内的所有细胞,墨西哥钝口螈可以重建整个四肢和部分大脑,斑马鱼可以修复断裂的脊髓,绿安乐蜥则能重新长出尾巴。鱼类、两栖动物、爬行动物和蠕虫展现的再生能力令研究人员着迷已久......
当实验小鼠的血管受损后,科学家将仅用5天时间在实验室中培育出的微型球状人工血管植入其体内,成功恢复了受损组织的血液供应,大幅减少了组织坏死的发生。这一突破为未来治疗因事故或血栓导致的组织损伤带来了新的......
......
中国科学院广州生物医药与健康研究院刘兴国团队与广州医科大学应仲富团队等发现,线粒体未折叠蛋白反应(UPRmt)在多能干细胞命运中通过c-Jun调控组蛋白乙酰化,进而影响间充质-上皮转化(MET)的新模......
瑞士帝肯(Tecan)2024年全年及第四季度财务报告,面对全球生物制药行业资本支出缩减及中国市场需求疲软等挑战,公司通过结构性调整与技术创新保持业务韧......
国家自然科学基金委员会遵循医学科学属性和临床医学人才成长规律,自2024年起在青年科学基金项目(A类)申请中增加“临床科学”附注说明选项,并组织开展分类评审,鼓励青年临床医师立足临床实践,以揭示疾病本......
IGC 2025(第九届免疫基因及细胞治疗大会)将于4月17-18日在北京再度启航!大会为期两天,分类出五大细分论坛,深度解析免疫细胞治疗、干细胞与外泌体治疗、基因编辑及基因治疗、mRNA疫......
2月23日,记者从海南医科大学获悉,该校热带医学院杨国静教授团队近日在国际医学期刊《英国医学杂志》在线发表论文《中国被忽视热带病负担估计的差异:真实世界数据与GBD2021的比较研究(2004—202......
摘要:蛇年最火热的ATMP盛会就在4月17-18日,IGC2025与您相聚春日首都!八年积淀,IGC 2025(第九届免疫基因及细胞治疗大会)将在4月17-18日于北京再度创新启航!IGC2......