发布时间:2019-05-03 15:55 原文链接: CloningofsmallRNAswith5’phosphateand3’OHends01

Introduction

The following protocol describes a procedure for the purification and cloning of miRNAs and other small RNAs in the  20-30 nucleotide size range from plant tissue. Figure 1 gives an overview of the cloning procedure.

Back to top

Procedure

Purifying 20-30 Nucleotide lengths from 10µg of Total RNA (1 µg/µl).

Instead of gel purification, mirVANA isolation can replace this step following manufacturer’s instructions. We have used from 1.5 to 5 µg of small RNA (from 10 to 35 µg total RNA). Note, we also use Arabidopsis floral tissue, which has a high percentage of small RNAs (comment 1).

  1. Prepare the 15% 8M UREA gel. Pour a 15% UREA gel in the Biorad MiniProtean 2, using 0.75mm spacers.

    12.5 ml makes two 0.75mm gels


    1. 5.25g Urea

    2. 625 µl 10X TBE

    3. 4.7 ml 40% acrylamide (19:1 acrylamide:bis-acrylamide)

    4. Add water to 12.5 ml and dissolve urea

    5. Add 87.5 µl 10% APS

    6. 4.4 µl TEMED

    7. Pour immediately (comment 2)

  2. Pre-run the gel for 30 min at 200V and then wash the wells using 0.5X TBE.

  3. Mix 10 µl (10 µg) of total RNA with 10 µl of 2x Gel Loading Buffer II (or equal volume 100% formamide with loading dye) in a 200 µl RNase-free microfuge tube. Heat the sample at 65°C for 5 min, then snap cool on ice. Centrifuge to collect volume to bottom of tube and load the sample into one well.

  4. Load 10µl of the Baulcombe oligo ladder already prepared (sizes marked 20, 30, 40, 60 and 80)

  5. Run the gel at 150V until the bromophenol blue reaches the bottom of the gel (about 2 hours). Stain the ladder portion of the gel with 0.5X EtBr for 2-5 min.

  6. Cut out the gel slice corresponding to 20-30 nt (visualized with UV) with a clean razor blade and transfer to a 0.5 ml RNase-free microfuge tube whose bottom has been punctured 3 to 4 times by a 21 gauge needle.

  7. Place this tube into a 2 ml RNase-free round-bottom microfuge tube and spin the gel through the holes into the 2 ml tube at full speed for 2 min (comment 3).

  8. Add 500µl of sterile 0.3 M NaCl to the tube and elute the RNA by rotating the tube overnight at 4°C.

  9. Transfer the eluate and the gel debris into a Spin-X Cellulose Acetate filter and spin at full speed for 2 minutes.

  10. Wash the gel bits once more with 100µl 0.3M NaCl and spin for another 2 min. Collect the 100µl eluate in the same tube.

  11. Add an equal volume (~600µl) of 100% Isopropanol and 3µl of glycogen (we used Ambion glycoblue) to the sample and incubate at –80°C for 20 to 30 minutes.

  12. Spin down at 14K rpm for 25 minutes in a 4°C microcentrifuge.

  13. Carefully remove supernatant and wash pellet with 750µl of room temperature 75% EtOH. Allow the RNA pellet to air dry then dissolve the RNA in total of 5.7µl of DEPC-treated water (we used Ambion’s nuclease-free water).

5’ Adaptor Ligation and Purification

  1. Heat the RNA for 30 seconds at 90°C and then snap cool on ice.

  2. Set up the 5’Adaptor ligation reaction in a 1.5 ml RNase free silconized microfuge tube: 


    • Purified miRNA from step 1.12          5.7µl

    • 5’ RNA adaptor (5 µM)                         1.3µl

    • 10X RNA ligation buffer                       1µl

    • T4 RNA ligase (10 U/µl)                     1µl

    • RNAguard™ (40 U/µl)                         1µl

  3. Incubate at 37°C for 1 hour. (Or at +20°C for 6 hours then 4°C overnight in a PCR machine).

  4. Stop reaction by adding either 10µl 2x Gel Loading Buffer II or 10µl 100% formamide and 3µl loading dye. Heat the ligated sample/loading buffer mixture at 65°C for 5 minutes prior to loading gel.

  5. Prerun the 15% TBU gel (0.5X TBE 0.75mm Biorad Mini-Protean II gel) for 30 minutes at 200V. See recipe in step 1. Wash the wells with TBE buffer prior to loading.

  6. Load the ligated samples and the 40-60nt ladder (10µl of prepared ladder) in wells with at least 1 space in between ladder and samples. It is advisable to run each sample with its own ladder and cut the gel before staining OR run each sample on separate gels to avoid contamination amongst samples.

  7. Run gel at 150V until the xylene cyanol is near the bottom of the gel (about 2hours: the xylene cyanol runs at about 40nt on this gel). Stain the ladder portion of the gel OR each sample with its own ladder using 0.5X TBE/ EtBr.

  8. Cut out the gel band corresponding to 40-60 nt with a clean razor blade (after aligning the stained ladder back to the gel if ladder was cut away separately) and transfer the gel slice to a 0.5 ml RNase-free microfuge tube whose bottom has been punctured 3 to 4 times by a 21 gauge needle.

  9. Place this tube into a 2 ml Rnase-free round-bottom microtube and spin the gel through the hole into the 2 ml tube at full speed for 2 min.

  10. Add 500µl of sterile 0.3 M NaCl to the tube and elute the RNA by rotating the tube overnight at 4°C.

  11. Transfer the eluate and the gel debris into a Spin-X Cellulose Acetate filter and spin at full speed for 2 minutes.

  12. Wash the gel bits once more with 100µl 0.3M NaCl and spin for another 2 min. Collect the 100µl eluate in the same tube.

  13. Add an equal volume of 100% Isopropanol (~600µl) and 3µl of glycogen to the sample and incubate at –80°C for 20-30 minutes.

  14. Spin down at 14K rpm for 30 minutes in a 4°C microcentrifuge.

  15. Carefully remove supernatant and wash pellet with 750µl of room temperature 75% EtOH. Allow the RNA pellet to air dry then dissolve the RNA in total of 6.4µl of DEPC-treated water (we used Ambion’s nuclease-free water).




相关文章

微生物所发现真菌跨界SmallRNA作用新机制

自然界中,不同物种间进行着广泛的生物大分子交流,包括蛋白、DNA和RNA等(ZhaoandGuo,2019)。近年来,由跨界传递的smallRNA(sRNA)介导的RNA沉默(RNAsilencing......

合肥研究院城市HOx自由基观测与模拟研究取得进展

近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员谢品华课题组在大城市OH和HO2自由基观测与模拟研究方面取得新进展,相关研究成果发表在ScienceoftheTotalEnvironme......

科学家将人工智能技术成功用于蛋白质复合物结构预测

蛋白质作为构成人体组织器官的支架和主要物质,在人体生命活动中起着重要作用。蛋白质的相互作用能产生许多效应,如形成特异底物作用通道、生成新的结合位点、失活、作用底物专一性和动力学变化等,细胞的代谢、信号......

发力癌症分子病理诊断,无锡臻和全资收购TissueofOrigin®

2021年9月9日,无锡臻和生物科技有限公司(以下简称“臻和科技”)与美国VyantBio公司签署TissueofOrigin®(以下简称“TOO®”)全球权益和ZL转让协议,全资收购这款唯一获FDA......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

NatureCommunications:环形RNAs在脑衰老过程中的生物学作用

大脑衰老的生物学机理十分复杂,受到遗传、年龄和环境等多个因素的调控和影响,其中随年龄和环境等因素而变化的表观遗传调控被认为是重要的调控环节之一。基因组中大约90%的DNA都具有转录活性,但其中仅有1.......

厉害了!这台光谱仪实现大气OH自由基总反应性测量

近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所张为俊团队在大气OH自由基总反应性测量方面取得新进展,相关研究成果《时间分辨激光闪光法拉第旋转光谱仪:一种用于OH自由基总反应性测量和自由基动力......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

高灵敏、高时间分辨率实时在线测量大气OH自由基

近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员谢品华课题组在大气OH自由基外场高灵敏测量研究方面取得新进展,相关研究工作以《基于激光诱导荧光技术的对流层大气OH自由基外场探测系统》(D......