发布时间:2019-11-13 09:58 原文链接: DNA微阵列技术介绍及其应用

DNA微阵列技术(microarray)指在固体表面(玻璃片或尼龙膜)上固定成千上万DNA克隆片段,人工合成的寡核苷酸片段,用荧光或其他标记的mRNA,cDNA或基因组DNA探针进行杂交,从而同时快速检测多个基因表达状况或发现新基因,快速检测DNA序列突变,绘制SNP遗传连锁图,进行DNA序列分析等的一种新技术,其基本原理是基于Southern杂交或斑点杂交技术。将DNA 微阵列称为基因芯片实际上是不确切的。 生物芯片 (bioship) 属于分子生物电子学范畴,只采用DNA或蛋白质等生物高分子为骨架制成大规模集成电路,用于研制第六代智能计算机。

DNA 微阵列有两种基本形式,即点样型DNA 微阵列和原位合成型DNA 微阵列。

点样型DNA 微阵列,通过PCR扩增的上万个DNA克隆,或常规合成的寡合苷酸被点样固定在一定固体表面(玻璃片,尼龙膜),用一组标记探针单独或混合处理检测。

制备方法:采用常规技术制备DNA,用点样仪自动点样在玻璃片上。

1.制备DNA片段:采用特异引物从各个克隆进行PCR扩增或将基因组DNA克隆到通用载体,然后纯化后重悬浮于3*SSC,使终浓度为0.5μg/μl.

2.微阵列制作:玻璃片清洗,包被多聚赖氨酸(35ml 多聚赖氨酸,35ml PBS,280ml ddH2O),双蒸水冲洗,干燥。用微阵列仪点样,每种样品放5nl,用介层连接确定其互补序列。

制备方法:可改装一台半导体光印刷仪,采用光导向结合化学原理合成各种寡核苷酸探针。

1.玻璃片清洗后包被一层多聚赖氨酸。

2.在玻璃片上每个一定间距连接上带有光不稳定保护基的羟基。

3.UV照射,通过光印刷仪的遮盖膜使UV只穿过特定微孔射向玻璃片,将孔下的光不稳定保护基除去,产生自由羟基。

4.加入5’端带光不稳定保护基的磷酰胺碱基与自由羟基连接。

5.使遮盖膜微孔对准邻侧另一光不稳定保护基,重复4.5.依次有序进行,第一层碱基连接完毕后再进行第二层第三层.......。核苷酸探针的排列组成必须严格有序。

靶DNA与微阵列杂交及荧光标记检测:在检测靶基因不同表达水平时,常用一组不同荧光标记的mRNA和cDNA探针进行杂交。探针与微阵列在65度杂交16小时,依次用0.5*SSC,0.01%SDS,0.006*SSC在室温下洗5min,除去未结合探针。然后用连接电脑的倒置扫描共聚焦显微镜阅读微阵列,扫描和资料分析。一般采用分析红色和绿色荧光杂交强度和比例的软件分析。

DNA微阵列技术的应用

一,检测基因表达水平及识别基因序列。Schena等1996年用拟南芥光调基因微阵列,以不同器官中的mRNA为探针,检测其基因表达水平,结果表明叶mRNA的表达水平是根的500倍。Shelon等1996年将酿酒酵母基因组DNA克隆制成微阵列,用6条最大染色体和10条最小染色体DNA探针分别标记上红,绿荧光标记进行杂交检测,结果表明95%的克隆在染色体上的定位与文献报道一致。Milosaljevic等1996年将大肠杆菌基因组DNA的15328个克隆制成微阵列,用997众寡核苷酸探针进行杂交检测,汇总结果通过计算机与E.coli序列资料库相比较,用此技术一次可识别4.6MbDNA序列结构。

二,检测表达状况,发现新基因。Wodicka1997年将覆盖酵母基因组全部ORF的26万种25mer探针,阵列于4张玻片,每张6.5万个探针,将酵母分加富和低限两组培养,研究不同生长条件下基因表达水平,结果表明90%的基因在两种条件下均表达,36种mRNA更多地在加富培养下表达,140种mRNA在低限培养中表达。此外,还发现了一批未见报道的新基因。

三,检测突变和多态性进行遗传作图。Hacia等1996年用96600寡核苷酸阵列,检测人癌基因BRCA1突变情况,将15个患者样品和对照样品分别用两种荧光标记,发现14人的该基因发生了一个剪辑突变,共出现8种多态性,突变表现在该基因外显子2的第22个密码子内。利用SNP制作人类遗传图谱,将是第三代遗传图谱,此技术完全以DNA微阵列为基础。

四,DNA序列分析。Donnel等1992,Pease等1994,Yershow等1996,Wallraff等1997都报道了采用DNA微阵列技术进行DNA序列分析。多数研究者采用先合成寡核苷酸序列制作微阵列,然后与标记的未知DNA序列杂交,通过荧光共聚焦显微镜扫描,计算机软件分析得出数据,也有研究者将被测DNA片断阵列,以标记的寡合苷酸为探针杂交测序。


相关文章

荧光传感器实时监测DNA损伤及修复

荷兰乌得勒支大学研究人员开发出一款全新荧光传感器,可在活细胞乃至活体生物中实时监测DNA损伤及修复过程,为癌症研究、药物安全测试和衰老生物学等领域提供了重要的新工具。相关成果发表于新一期《自然·通讯》......

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

拿破仑的军队是如何灭亡的?DNA揭示令人意外的疾病因素

1812年,法国皇帝拿破仑一世从俄罗斯莫斯科撤退时,其大部分军队因饥饿、疾病和寒冷的冬天而损失殆尽。如今,对这撤退途中丧生的30万士兵的部分遗骸的DNA的分析发现,两种未曾预料到的细菌性疾病很可能增加......

DNA揭示拿破仑军队“全军覆没”元凶

1812年夏,法兰西皇帝拿破仑·波拿巴率50万大军入侵俄罗斯帝国。然而到12月时,这支军队仅余零星残部。历史记载将此次“全军覆没”归因于饥寒交迫与斑疹伤寒。但一项新研究表示,从士兵牙齿中提取的DNA,......

“DNA花朵”微型机器人可自适应环境变化

美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......