发布时间:2019-04-27 16:55 原文链接: DetectionOfCellViabilityAnd/OrApoptosisByFlowCytometry(FACS)

Viable cells are cells that when allowed to continue beyond the timepoint of examination will stay alive. Besides live and healthy cells, cells in early stages of apoptosis may be considered viable as early apoptosis is believed to be reversible if the conditions inducing apoptosis are removed. Conditions inducing apoptosis include withdrawal of or exposure to certain factors (e.g., withdrawal of NGF, or exposure to TNF-α). These conditions are presented in vivo 'normally' (e.g., during maturation of lymphocytes) or 'abnormally' (e.g., during viral infections), or in vitro with our choice (e.g., addition of campotheticin chemical to cell culture) or with us unaware of or ineffective against them (e.g., lack of growth factors during handling).


Apoptosis ultimately leads to death and this can take from some minutes to many hours. The early stages of apoptosis are characterized by changes to mitochondrial membrane potential and cell membrane asymmetry (but not increased cell permeability). Later stages are characterized by DNA fragmentation and loss of cell membrane permeability. In general, apoptotic cells shrink (and can break up into smaller apoptotic bodies) and have characteristic nuclear changes that are visible under an electron microscope.


Necrosis, unlike apoptosis, is not a step-wise, controlled phenomenon. It is caused by physical disruption of the cell by physical (e.g., heat) or chemical (e.g., low pH) means, microbial toxins (e.g., by causing increased cell permeability), etc. Early necrotic cells have relatively-normal looking nuclei but their cell membranes (and organellar membranes) are fragmented. With time, organellar (including nuclear) disruption takes place and the cells generally swell, eventually bursting (and releasing inflammation inducers). Apoptotic cells in the last stages can necrose too.


Cytometric characteristics of non-viable cells


A sample of cells being examined by flow cytometry (e.g., for expression of a certain antigen) will have some non-viable cells (arising because of apoptosis and/or necrosis - see above for reasons). Unless one is specifically measuring apoptosis, these non-viable cells should be excluded from examination by gating. This is because, for example, they may non-specifically bind a fluorescent secondary antibody, the antigen being detected may have been degraded, etc.


Non-viable cells tend to have reduced FSC (can be high in case of swollen necrotic cells) but higher SSC values. Because of membrane permeability increases, DNA (and depending on the reagent, RNA too) of dead cells, necrosing cells and cells in late apoptosis will bind reagents such as propidium iodide (PI; MW 668) and 7-actinomycin D (7-AAD; MW 1270) to fluoresce more.


Because of loss of cell membrane asymmetry (for example, leading to the exposure of phosphatidylserine because of its increased presence on the outer leaflet), dead cells, necrosing cells and cells in early stages of apoptosis can be detected by binding of annexin V (a phosphatidylserine-recognizing protein).


As apoptosis involves induction of caspases, it can also be detected flow-cytometrically using fluorogenic caspase substrates or anti-caspase antibodies. Loss of mitochondrial membrane potential can be detected with reagents such as JC-1 that is lipophilic and upon exposure to negative mitochondrial potential (of healthy cells) reversibly aggregates.


A note on annexin V


Positive annexin V binding but lack of staining with PI (or 7-AAD) can thus be used to discriminate early apoptosis from late apoptosis and necrosis. However, it should be kept in mind that increase presence of phosphatidylserine on cell membrane (thus, increased annexin V binding) can occur because of other 'physiological' reasons (e.g., upon exposure to galectins).


Similarly, increased permeability to PI can be a result not of necrosis or apoptosis but of something else (e.g., exposure to galectins).


Staining cells with PI or 7-AAD for flow cytometry


PI fluorescence is detected in the FL2 or FL3 channels of the cytometer. High values indicate non-viability. 7-AAD is detected in the FL3 channel. High values indicate non-viability.


7-AAD is more permeable than PI; so, over time more cells will stain with 7-AAD than PI, and apoptosing cells will stain with 7-AAD earlier than with PI.


7-AAD solution at 1 mg/ml is prepared by dissolving 1 mg in 50 ul methanol and then diluting the solution with 950 ul PBS. Store at 4°C protected from light - can be used for atleast 6 months.


PI is used at 2-5 ug/ml and 7-AAD at 5-10 ug/ml final concentrations. A few seconds of incubation is enough in case of PI, whereas for 7-AAD, 10 minutes at RT or upto 30 minutes on ice is the typical duration of incubation.


Hoechst 33342


The HO342 or Hoechst 33342 dye, unlike PI, is non-polar and diffuses readily into cells (alive or non-viable) and binds AT-rich DNA regions. However, viable cells retain it more, and thus stain stronger. It is used at 1-5 ug/ml final concentration. Cells are incubated for 20-30 min at 37 deg. Fluorescence, detected in FL1, requires a UV laser, however.


Notes


1. Cells exposed to fixatives, detergents and hypotonic solutions will stain more with PI or 7-AAD.

2. Cells exposed longer to PI or 7-AAD will stain more.

3. A cell population being studied may not represent the true population, and thus may show less incidence of apoptosis than is true. E.g., when harvesting adherent cells, floating cells (usually apoptotic), may have been discarded. Similarly, apoptotic cells may be lost during other procedures such as low-speed centrifugation because of smaller size.


相关文章

每年主刀800台手术,“大师姐”抽空发顶刊刷新历史

文|《中国科学报》记者李思辉实习生何睿她是一位知名三甲医院的科室主任:不仅负责科室的管理工作,而且每周4个半天坐诊,每年主刀800多台手术;她是院士师门的“大师姐”:繁忙的临床工作之余,做研究、带学生......

2024年张锋团队迎来首篇Cell

Fanzor(Fz)是一种广泛存在于真核生物结构域的ωRNA引导内切酶,具有独特的基因编辑潜力。2024年8月28日,麻省理工学院/博德研究所张锋团队在Cell在线发表题为“Structuralins......

创造新的记录!西湖大学1天2篇Cell

叶绿体蛋白在ATP酶马达的驱动下,通过叶绿体外膜(TOC)转座子和叶绿体内膜(TIC)超复合体的转座子导入。Ycf2-FtsHi复合体已被确定为叶绿体进口马达。然而,其在前蛋白转运过程中与TIC复合物......

半夜灵机一动,武大教授获得一个神奇的“工具”

文| 《中国科学报》记者李思辉实习生毕若雪“2021年暑假的一个凌晨,我突然灵机一动,思考了很久的一个模型突然清晰起来。我立即从床上蹦起来,花了5分钟,在纸上把它清楚地画了出来!”说起最近发......

Cell和Wiley开放“一稿多投”系统涉及这些期刊

“一稿多投”一直被认为是不端的行为,但这个“规矩”是在纸质时代信息沟通不畅的情况下制定的,近年来广大作者呼吁取消这一观念的声音已振聋发聩!让人欣喜的是,截止目前,已经有两大国际知名出版社响应了这一呼吁......

北京理工大学,Cell+1

2024年4月23日,北京理工大学生命学院肖振宇副教授、中国科学院动物研究所王红梅、于乐谦、郭靖涛研究员、中国农业大学魏育蕾教授、郑州大学第一附属医院何南南助理研究员在国际学术期刊Cell发表文章《3......

Cell论文遭曝20幅图作假,引发学术界震动

2019年10月3日,加州大学圣地亚哥分校BrendaL.Bloodgood团队(G.StefanoBrigidi为第一作者)在Cell在线发表题为“GenomicDecodingofNeuronal......

研究揭示血脑屏障控制蚂蚁行为的生物学机制

美国宾夕法尼亚大学佩雷尔曼医学院科研人员发现,蚂蚁的血脑屏障在控制其行为方面起着积极的作用。血脑屏障可以调节蚂蚁大脑中的激素水平,从而影响他们在蚁群中的行为。相关研究成果发表在《Cell》杂志上。研究......

2023年张锋团队发表4篇Nature,Science及Cell

RNA引导系统利用引导RNA和靶核酸序列之间的互补性来识别遗传元件,在原核生物和真核生物的生物过程中都起着核心作用。例如,原核CRISPR-Cas系统为细菌和古细菌提供了对外来遗传因子的适应性免疫。C......

Cell:新研究有助于确定使我们成为人类的基因变化

大约700万年前,人类从我们最接近的动物亲戚黑猩猩那里分离出来,在进化树上形成了我们自己的分支。在此后的时间里---从进化的角度看是短暂的---我们的祖先进化出了使我们成为人类的性状,包括比黑猩猩大得......