发布时间:2019-04-26 14:19 原文链接: DynamicMonitoringofCellularRemodelingInducedbytheTransformingGrowth1

The plasticity of differentiated adult cells could have a great therapeutic potential, but at the same time, it is characteristic of progression of serious pathological states such as cancer and fibrosis. In this study, we report on the application of a real-time noninvasive system for dynamic monitoring of cellular plasticity. Analysis of the cell impedance profile recorded as cell index using a real-time cell analyzer revealed its significant increase after the treatment of prostate epithelial cells with the transforming growth factor-β1. Changes in the cell index profile were paralleled with cytoskeleton rebuilding and induction of epithelial–mesenchymal transition and negatively correlated with cell proliferation. This novel application of such approach demonstrated a great potential of the impedance-based system for noninvasive and real-time monitoring of cellular fate.

Key Words: real-time cell analysis - cell plasticity - epithelial–mesenchymal transition - transforming growth factor-β1 - F-actin - cytoskeleton remodeling


Introduction

The phenomenon of plasticity of differentiated adult cells could have a great therapeutic potential, but at the same time, it is characteristic of progression of serious pathological states. Epithelial–mesenchymal transition (EMT) is a crucial process in embryogenesis, but it also occurs during progression of tumors derived from epithelial cells (for review, see (1)). The transforming growth factor-β1 (TGF-β1) is an important growth factor inducing remodeling of epithelial cells. TGF-β1 induces a complex change of the gene expression profile, which leads to the induction of cell cycle arrest, increased cell migration, and spreading (24). In general, determination of the quality and quantity of remodeling of epithelial cells is a complex issue. It usually includes quantification of expression of epithelial and mesenchymal markers (E-cadherin, N-cadherin, and vimentin), visualization of cytoskeletal rebuilding (F-actin), migration, and invasive assay (wound healing and migration through Matrigel matrix; (5)). Conventionally, most of the approaches mentioned are based on a time-consuming end-point analysis of the state of whole cell populations combined with advanced techniques of analysis of individual cells with the use of flow cytometry or digital microscopic techniques and image analysis. However, neither the episodic nor the spatial resolution of these techniques is capable of registering very small and fast changes in cellular morphology. Currently, label-free and noninvasive methods based on electronic cell sensor arrays were suggested for the monitoring of cell physiology, particularly adhesion, spreading, and transient changes in cell morphology (69). To widely accept this methodological approach and to correctly and precisely interpret data for these measurements is crucial to obtain precise correlation with cell morphology and overall phenotype using a relevant reference method. However, well-described models applying this methodological approach with different cell lines and various cell plasticity modulating conditions are missing. Here, we showed that the impedance-based real-time cell analyzer (RTCA) allows dynamic monitoring and quantification of cell remodeling during TGF-β1-induced EMT in non-transformed prostate epithelial cells. This novel application of such approach demonstrated a great medium-throughput potential of the impedance-based system for noninvasive and real-time monitoring of cellular fate.


Materials and methods

Cells

BPH-1 cells were obtained from the German Collection of Microorganisms and Cell Cultures and cultivated in RPMI 1640, supplemented with 20% bovine fetal serum (both PAA), 5 µg/ml transferrin, 5 ng/ml sodium selenite, and 5 µg/ml insulin (Invitrogen). The cell lines were cultivated in Nunc (Thermo Fisher Scientific) cultivation dishes, flasks, and plates in a humidified incubator at 37°C in an atmosphere of 5% CO2.

Real-time cell impedance analysis

Acea E-plates® 96 were used for noninvasive real-time measurement with the use of an xCELLigence RTCA SP system including RTCA Software version 1.1 (both Roche). First, a standard background measurement was performed using 100 μl of complete cultivation media. BPH-1 cells were trypsinized, quantified, and seeded in additional 100 μl of cultivation media in a final concentration of 30,000 cells per cm2. The cells were monitored continually every 1 min in the first 45 min after the seeding and then every 1 h for a period of 96 h. Recombinant TGF-β1 (Millipore) treatment with various concentrations in triplicate was performed 24 h after the seeding of the cells. Formation of contractile microfilaments was blocked by cytochalasin B (CB), Helminthosporium dematioideum (Calbiochem) dissolved in methanol (MeOH). The cells were pretreated with TGF-β1 (10 ng/ml) for 68 h and treated with CB (10 μg/ml) for another 3 h. The cells were monitored continually every 15 s after the CB addition. In this case, data are presented as a normalized cell index (CI; normalized at the time of 68 h). Cultivation of the cells and their treatment were performed under standard conditions (37°C/5% CO2).

Cell counts

The numbers of trypsinized BPH-1 cells in the culture were determined using a Coulter Counter® ZM (Beckman-Coulter).

ATP assay

Intracellular ATP was detected in BPH-1 cells by the commercial ATP cellular kit (Biothema, Sweden). The cells were incubated according to the experimental procedure, the supernatant was removed, and the cells were lysed by the Somatic cell ATP releasing reagent (Sigma-Aldrich). Then, 50 μl of lysate was mixed with 20 μl of ATP reagent containing D-luciferin, luciferase, and stabilizers. Intracellular ATP contents were determined using a microplate luminometer LM-01T (Immunotech).

Fluorescent and light microscopy

F-actin was visualized after the staining of paraformaldehyde (2%) fixed and permeabilized BPH-1 cells with phalloidin-fluorescein isothiocyanate (Sigma-Aldrich) using a fluorescent microscope (Olympus IX-70, Fluoview II CCD camera). Nuclear counterstaining was performed by using 4′,6-diamidine-2′-phenylindole dihydrochloride (DAPI; Fluka). Cell morphology was documented by phase contrast on the same microscope.

Western blot

BPH-1 cells were treated by various concentrations of TGF-β1 for different time intervals and harvested in radioimmunoprecipitation assay buffer (50 mM Tris–HCl pH 7.4, 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, protease inhibitor cocktail, and phosphatase inhibitor cocktail set II (Merck)). Protein concentration was determined using detergent-compatible protein assay (Bio-Rad). The cell lysates were sonicated (5 s, Sonifier® B-12, Branson Ultrasonics Corp), spun, and mixed with 3× sodium dodecyl sulfate (SDS) loading buffer (240 mM Tris–HCl pH 6.8, 6% SDS, 0.02% bromphenol blue, 30% glycerol, 3% β-mercaptoethanol). Equivalent quantities of protein (20 µg) were separated by SDS-polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride membranes (Millipore) using established procedures. The membranes were blocked in Tris-buffer saline (20 mM Tris–HCl pH 7.2, 140 mM NaCl) containing 0.1% Tween 20 and 5% non-fat milk. The levels of phosphorylated (Ser465/467) and total Smad2, and expression of vimentin, a characteristic mesenchymal marker, were analyzed with specific primary antibodies (Cell Signaling and Sigma-Aldrich). Anti-β-actin (A5441) was from Sigma-Aldrich; horseradish peroxidase-conjugated anti-mouse IgG (#NA931) and anti-rabbit IgG (#NA934) were from GE Healthcare. Detection of antibody reactivity was performed using Immobilon Western HRP Substrate (Millipore). Densitometric measurements were performed using ImageJ software (NIH) and normalized to the expression of β-actin.


相关文章

中国期刊“黑神话”,比肩NCS!影响因子高达33.2

日前,国产期刊TheInnovation获得首个影响因子(IF=32.1),成为科睿唯安JCR综合性期刊分类下排名仅次于《自然》(IF=64.8)和《科学》(IF=56.9)的期刊,并且这本期刊在目前......

190亿!赛默飞收购欧洲IVD巨头

近日,服务科学领域的全球领导者赛默飞世尔科技(以下简称赛默飞)宣布,在达成收购意向两个月之后,赛默飞以28亿美元、折合人民币约190亿元的价格,完成了对TheBindingSiteGroup的全现金收......

施普林格·自然与TheLens达成合作

11月15日,施普林格·自然和TheLens平台宣布结成重要的合作伙伴关系,以更深入地揭示学术研究和数据如何能通过经济和社会成效,加速推动创新的问题解决方式。通过将科学、投资和企业领域的开放数据更好地......

科学家将人工智能技术成功用于蛋白质复合物结构预测

蛋白质作为构成人体组织器官的支架和主要物质,在人体生命活动中起着重要作用。蛋白质的相互作用能产生许多效应,如形成特异底物作用通道、生成新的结合位点、失活、作用底物专一性和动力学变化等,细胞的代谢、信号......

发力癌症分子病理诊断,无锡臻和全资收购TissueofOrigin®

2021年9月9日,无锡臻和生物科技有限公司(以下简称“臻和科技”)与美国VyantBio公司签署TissueofOrigin®(以下简称“TOO®”)全球权益和ZL转让协议,全资收购这款唯一获FDA......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

这3个杂志撤回中国学者249篇文章,包含上交、中山等名校

2021年7月20日,JournalofCellularPhysiology及JournalofCellularBiochemistry同时撤回了中国学者49篇文章。从2019年开始,Journalo......

连看三大世界大学排名榜我国哪所大学是排名的“宠儿”?

6月10日,QS教育集团正式发布了2021年世界大学排名,中国共有83所高校上榜,包括内地高校51所,港澳台地区高校32所。中国大学的总体排名情况已经连续数年呈上升趋势,今年再度刷新了榜单。大学排名,......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......

肿瘤治疗的强心剂,中国学者开发肿瘤治疗新策略

磷酸甘油酸突变酶1(PGAM1)通过其代谢活性以及与其他蛋白质(例如α平滑肌肌动蛋白(ACTA2))的相互作用,在癌症代谢和肿瘤进展中起关键作用。变构调节被认为是发现针对PGAM1的高选择性和有效抑制......