发布时间:2019-04-20 10:06 原文链接: FungalMidiDNAKitProtocolforFresh/FrozenSpecimens

实验概要

This  protocol is suitable for most fresh or frozen tissue samples allowing  more efficient recovery of DNA. However, due to the tremendous variation  in water and polysaccharide content in fungi, sample size should be  limited to ≤1g.

To prepare samples collect tissue in a 30mL mortar and freeze by  dipping in liquid nitrogen with a pair of tweezers to fill the tube.  Grind the tissue using clean pestles. Alternatively, one can allow  liquid nitrogen to evaporate and then store samples at -70°C for later  use. For critical work such as PCR and cloning, pestles are best used a  single time then soaked in a dilute bleach solution immediately after  use until clean. Disposable pestles may be autoclaved several times. For  standard Southern analysis, the same pestle can be reused several times  to grind multiple tissue samples by rinsing with ethanol and carefully  wiping the surface clean between samples.

主要试剂

1. Equilibrate sterile dH2O water or DNA Elution Buffer at 65°C.

2. Isopropyl alcohol (isopropanol)

3. Absolute (96%-100%) ethanol

4. RNase A stock solution at 20 mg/mL

主要设备

1. Centrifuge capable of at least 8,000 x g

2. Nuclease-free 15 mL or 20 mL high speed Carbonate Thick wall centrifuge tubes

3. Waterbath equilibrated to 65°C

实验步骤

1. Collect ground  Fungal tissue (start with 500 mg) in a 15 mL tube and immediately add  3mL Buffer FG 1 and 20 ul RNase A (20mg/mL). Vortex vigorously to mix  the sample. Make sure to disperse all clumps. DNA cannot be effectively  extracted from clumped tissue.

2. Incubate at 65°C for 30-60 min. Mix sample twice during incubation by inverting tube.

3. Add 700 ul Buffer FG 2 and vortex to mix. Incubate on ice for 10 minutes. Centrifuge at $8,000 x g for 10 min.

4. Carefully transfer supernatant into a new 15 mL centrifuge tube  making sure not to loosen the pellet. Measure the volume of the sample  and add 1.5 volume of prepared FG3/ethanol mixture (see instruction in  Before Starting). Vortex the sample to mix throughly.

5. Apply the entire sample (including any precipitate that may have formed) to a HiBind®  DNA Midi-column placed in a 15 mL collection tube (supplied) .  Centrifuge the column at 8,000 x g for 5 min to bind DNA. Discard the  flow-through liquid and reuse the collection tube.

6. Place column to a same collection tube and wash by adding 3.5 mL  DNA Wash Buffer diluted with absolute (96%-100%) ethanol. Centrifuge at  8,000 x g for 5 min and discard the flow-through liquid. Reuse the  collection tube in Step 7 below.

NOTE: DNA Wash Buffer Concentrate must be diluted with absolute (96%-100%) ethanol prior to use. Follow directions on label.

7. Repeat wash step with an additional 3.5 mL DNA Wash Buffer.  Centrifuge at 8,000 x g for 5 min. Discard flow-through and reuse 15 mL  collection tube in step 8.

8. Centrifuge empty column 15 min at 8000 x g to dry the columns.  This step is critical for removing residual ethanol that may otherwise  be eluted with DNA and interfere with downstream applications.

9. Transfer column to another clean 15 mL collection tube (not  supplied with this kit). Apply 500 ul Elution Buffer (or sterile  deionized water) pre-warmed to 65°C and incubate at room temperature for  3 min. Centrifuge at 8,000 x g for 10 min to elute DNA. Smaller volumes  will significantly increase DNA concentration but give lower yields.  Use of more than 2 mL of buffer for elution is not recommended.

10. Repeat Step 9 with an additional 500 ul of Elution Buffer. This  may be performed using another 15 mL collection tube (not supplied) to  maintain a higher DNA concentration in the first eluate.

TIP: To increase DNA concentration add buffer and incubate the column at 60°C- 70°C for 10 min before elution.

Total DNA yields vary depending on type and quantity of sample.  Typically, 50-250 ug DNA with a A260/A280 ratio of 1.7-1.9 can be  isolated using 250 mg dried tissue.


相关文章

荧光传感器实时监测DNA损伤及修复

荷兰乌得勒支大学研究人员开发出一款全新荧光传感器,可在活细胞乃至活体生物中实时监测DNA损伤及修复过程,为癌症研究、药物安全测试和衰老生物学等领域提供了重要的新工具。相关成果发表于新一期《自然·通讯》......

方显杨研究组与合作者共同开发了一种新型活细胞DNA成像技术

三维基因组互作与表观遗传修饰是基因表达调控的重要因素,其动态变化与细胞生长发育及癌症等疾病的发生发展密切相关。解析染色质在活细胞内的时空动态,是理解基因调控机制的重要科学问题。现有基于CRISPR-C......

拿破仑的军队是如何灭亡的?DNA揭示令人意外的疾病因素

1812年,法国皇帝拿破仑一世从俄罗斯莫斯科撤退时,其大部分军队因饥饿、疾病和寒冷的冬天而损失殆尽。如今,对这撤退途中丧生的30万士兵的部分遗骸的DNA的分析发现,两种未曾预料到的细菌性疾病很可能增加......

DNA揭示拿破仑军队“全军覆没”元凶

1812年夏,法兰西皇帝拿破仑·波拿巴率50万大军入侵俄罗斯帝国。然而到12月时,这支军队仅余零星残部。历史记载将此次“全军覆没”归因于饥寒交迫与斑疹伤寒。但一项新研究表示,从士兵牙齿中提取的DNA,......

“DNA花朵”微型机器人可自适应环境变化

美国北卡罗来纳大学研究团队研发出一种名为“DNA花朵”的微型机器人。这种机器人具有独特的自适应环境变化能力,能够像生物体一样,根据周围环境改变形状和行为。“DNA花朵”机器人由DNA与无机材料结合形成......

DNA搜索引擎MetaGraph研发成功

瑞士苏黎世联邦理工学院科学家在最新一期《自然》杂志上发表论文称,他们开发出一款名为MetaGraph的DNA搜索引擎,能快速、高效地检索公共生物学数据库中的海量信息,为研究生命科学提供了强大的专业工具......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

破解人脑独特性的关键DNA片段发现

究竟是什么让人脑与众不同?美国加州大学圣迭戈分校研究团队发现了一个名为HAR123的小型DNA片段,这将是解开人类大脑独特性之谜的关键。相关研究成果发表于新一期《科学进展》杂志。最新研究表明,HAR1......

科学家开发出超大片段DNA精准无痕编辑新方法

基因组编辑技术作为生命科学领域的一项重要突破,为基础研究和应用开发提供了技术支撑。以CRISPR及其衍生技术为代表的编辑系统通过可编程的向导RNA引导Cas9等核酸酶靶向基因组特定位点,被广泛应用于特......

在动物大脑中直接修复DNA——神经科学研究新突破系列之一

神经元中基因编辑的插图。图片来源:杰克逊实验室哪怕在五年前,人们也会认为在活体大脑中进行DNA修复是科幻小说中才有的情节。但现在,科学家已能进入大脑、修复突变,并让细胞在整个生命周期中维持住这种修复效......