Prior to transfection, it is recommended that you linearize your pcDNA gene construct. Linearizing will decrease the likelihood of the vector integrating into the genome in a way that disrupts the gene of interest or other elements required for protein expression. Suitable restriction enzymes for linearization are: Bg lII, MfeI, Pvu I, Sca I => for further, check Invitrogen pcDNA3.1 literature
Transfect cells in dishes of 6 cm diameter according to the protocol for transient transfection in HEK. About 16 hrs post transfection, exchange the medium to medium supplemented with 0.5 g/L of neomycin.
Keep exchanging the medium every day for 7-10 days. This is the time needed for the neomycin to act on the nontransfected cells, which then detach and are washed away during the medium exchange. Once all cells have died in the dish of the negative control (nontransfected), you can proceed with the cloning.
Take 4 - 6 (ore more) 96-well plates and fill them with 80 µl of neomycin-supplemented medium. You may pour the medium into a sterile round cell culture dish and use the multichannel pipette and filter tips in this process. Trypsinize the cells (allowing full separation of cells => no clumps!) and resuspend an aliquot of cells in a 15 ml falcon tube. Then make 1 or 2 serial dilutions (e.g. one in ten) and determine the cell concentration with the cytometer. Check your dilutions until you can only count 1-5 cells in the cytometer: the accuracy of your dilutions is very important.
Prepare a sufficient amount of a 3cells/20µl (150 cells/ml) dilution. Work fast and don't let the dilutions stand too long or the cells will form clumps. Distribute 20 µl to each well of the plates. Be sure that you constantly shake the cells in the medium (best done when having only few mililiters in a 50 ml falcon tube), in order to distribute them equally to the wells.
Let the cells grow in the wells for about 2 weeks. It is useful, if you already mark the wells containing monoclonal colonies (derived from 1 cell) after a few days. About one week after plating, you can also add 100 µl of fresh neomycin-medium to each well to reestablish high neomycin concentration (it may get broken down with time) and prevent contamination.
Once "big" colonies (about 1/6 of the well diameter) are visible, also by eye when viewing the wells from the bottom of the plate, and the color of the medium starts to change (typically after about 2 weeks), colonies can be screened for expression by ELISA. At this stage, expression values typically are between 0.05 and 0.2 µg/ml.
Choose the best clones to transfer them to a 24-well plate: First, prepare the wells in the new plate with about 400 µl of medium. Then aspirate the medium from the cells in the old wells and wash them with PBS, add trypsin (few 40 µls) and wait until cells have detached (about 1 minute). Gently resuspend the cells with the pipette. Add 80 µl of medium to the cells and transfer them to the fresh well. Let them grow and determine the protein-expression levels again once they have reached a suitable cell number. A the level of 24- or 6-well plates, it is also possible to make a first cryotube of each selected clone.
Since expression levels depend on the cell number, it is hard to determine the best expressing clone at the level of 24- or 6 well plates. Thus, it is best to grow several candidates up to the 75 cm2 level.
Be sure that you start expanding from monoclonal colonies in the 96 well plates!! - In polyclonal mixtures, the not producing, but neo-resistant cells might have a selective advantage and grow more rapidly, what finally leads to a depletion of the producing cell population.
During the process of clone selection, perform several ELISAs to be sure that you chose the clones with the consistently highest expression levels.
Start making cryotubes as a back-up as soon as possible. Once you have decided on a good clone, make at least 20 cryotubes of it before considering protein production (expression might be transient).
Be aware of fungi contamination.......
美国宾夕法尼亚大学佩雷尔曼医学院科研人员发现,蚂蚁的血脑屏障在控制其行为方面起着积极的作用。血脑屏障可以调节蚂蚁大脑中的激素水平,从而影响他们在蚁群中的行为。相关研究成果发表在《Cell》杂志上。研究......
RNA引导系统利用引导RNA和靶核酸序列之间的互补性来识别遗传元件,在原核生物和真核生物的生物过程中都起着核心作用。例如,原核CRISPR-Cas系统为细菌和古细菌提供了对外来遗传因子的适应性免疫。C......
大约700万年前,人类从我们最接近的动物亲戚黑猩猩那里分离出来,在进化树上形成了我们自己的分支。在此后的时间里---从进化的角度看是短暂的---我们的祖先进化出了使我们成为人类的性状,包括比黑猩猩大得......
生命起源于一颗受精卵。精子“翻山越岭”遇见卵子的能力,是生命发生的必要条件。如果精子的运动能力出现异常,自然受孕的成功率便会大大降低;当精液中精子向前运动的比例低于32%时,则被定义为“弱精症(ast......
多细胞生物在发育过程中,存在着多种预定的、受到精确控制的细胞程序性死亡,例如细胞凋亡(Apoptosis)、程序性坏死(Necroptosis)、细胞焦亡(Pyroptosis),以及铁死亡(Ferr......
近日,国际学术期刊Cell子刊CellReports刊发了中国科学院海洋研究所在海洋动物细胞程序性死亡方面的最新研究成果。 皱纹盘鲍细胞焦亡激活通路及免疫调控示意图 海......
步入夏天,又到了减肥的“黄金时节”。提及减肥,无外乎于“管住嘴,迈开腿”。现有减重指南中提到,成年人在减肥时,需要每天通过运动+减少食物摄入的方式来消耗500-600千卡的热量,其中运动消耗就要达到3......
长久以来,剪接体的调控机理是怎样的,它们在细胞内部的动态组合和变化是怎样的,深深地吸引着科学家们的研究兴趣,但其神秘的面纱一直未被揭开。2023年4月6日,西湖大学施一公团队在 Molecu......
目前,研究人员对于明确和稳定细胞亚型背后的分子机制仍然知之甚少。近日,一篇发表在国际杂志CellMetabolism上题为“Epigeneticdosageidentifiestwomajorandf......
我们对记忆的起点和终点有一个很好的概念---短期记忆在海马体中形成,如果情况需要,就会在大脑皮层中稳定为长期记忆。但是,在短期记忆到长期记忆之间的曲折路径上发生了什么,却是一个谜。如今,在一项新的研究......