分离和富集是两个不同概念的名词,但实际上他们是相辅相成的同一个系统,就是说有了分离即就有富集,反之富集也就是通过分离。一个样品的基本物质是其组成的基本部分,占了绝大的百分比。而这些基本物质往往不是要求测定的元素,基体元素的含量都会比较高,它将对ICP—AES分析产生激发干扰和光谱干扰,影响到痕量元素的测定(准确度、检出限)。为此,将基体元素和待测元素分离。分离不但除去了由基体元素产生的基体效应,而且同时使分析溶液达到了预富集的作用。因为大量基体元素分离掉,分析溶液的TDS降低,这样可以减少分析溶液的稀释倍数或可以蒸发浓缩,一般可达到几个数量级。
分离和预富集需注意的几个问题。
(1) 分离、富集步骤要少,操作要简便,便于掌握操作。最好将分离富集与样品分解结合起来,在分解的过程中即起了分离的作用。
(2) 在分离富集过程中待测元素全部被富集,不得损失,而基本元素在不影响测定的前提下不必完全干净地分离掉。
(3) 分离富集过程中所使用的试剂、器皿绝对不能含有待测元素,以免污染。
分离富集方法大致可分为四类(a)生成易挥发的化合物予以分离富集,(b)溶液萃取法,(c)离子交换色谱法,(d)共沉淀法。
1) 生成易挥发的化合物予以分离富集
A) 将大量基本元素分离除去
最常见的地质样品如一般岩石、矿石、土壤、沉积物等都会有较多的硅酸盐。在前面介绍的用HCl/HNO3/HF/HClO4分解样品的过程中,将样品中大量的硅转化为易挥发的SiF4而除去。这对分析硅酸盐类样品中痕量元素是很实用的一种分析分解、分离方法。
B) 氢化物测定法
将As、Sb、Bi、Hg、Se、Ge、Sn、Pb等元素用硼氢化钾还原,生成易挥发的氢化物,导入ICP中进行测定。以测定As、Sb、Bi、Hg为例,方法如下:
称取0.5g样品于50ml比色管中,加入新配制的10ml(1+1)王水,摇匀,置于沸水浴中加热煮沸1小时(每20分钟摇动一次比色管),取下冷却后用1%HCl稀释至刻度,摇匀澄清备用。
测定As、Sb:将上述样品清液20ml于干烧杯中,加入0.2g抗坏血酸,0.1g硫脲,溶解后放置20分钟。测定Bi, Hg:可直接用清液测定。
将上述溶液放入氢化物发生器中,加入硼氢化钾溶液,将上述元素还原成AsH3↑、SbH3↑、BiH3↑、Hg↑,进行测定。
2) 溶液萃取法
A) 萃取(除去)基本元素
测定氧化铀(U3O8)中杂质元素时,可将U3O8溶于硝酸中,用磷酸三丁脂(TBP)在分液漏斗中萃取除去基体UO2(NO3)2,铀转移入有机相中,待测元素(杂质元素)仍留在水相中,进行分析。
B) 萃取分析元素
在测定海水中的痕量元素Pb、Zn、Cd、Ni、Mn、Fe、V时,可用铜试剂(DDTC)—氯仿把海水中的上述元素提取到有机相中,挥发并破坏有机相,残渣用酸溶解后,用ICP—AES法进行测定。
3) 离子交换色谱法
地质样品中稀土元素的组成是研究地壳、地球、月球的形成与演化、岩石的成因、成矿物质来源、成岩成矿条件研究的重要资料。在岩石、超基性岩石中测定痕量的14个稀土元素(稀土元素共15个,其中有14个在自然界存在),最常用的分析方法即是离子交换色谱法,以分离富集稀土元素,然后用ICP—AES进行测定,方法流程如下:
A) 称取1.000g样品于刚玉坩埚中,加入5mlHF, 加热蒸干除硅。
B) 加入6—7g Na2O2 ,拌匀再在面上铺一层Na2O2,放入700℃马弗炉中熔融5—10分钟,取出冷却。
C) 置于400ml烧杯中,加温热10%三乙醇胺50ml浸取,待反应停止后,用2%NaOH洗出坩埚,加入1mol/L EDTA 1ml, 2%MgCl2溶液1ml,煮沸10分钟。
D) 加少量纸浆,加水至200ml,冷却,用中速滤低过滤。用2%NaOH洗涤烧杯及沉淀10—20次。再用热水洗沉淀2次。用热的8ml(1+1)HCl分次溶解沉淀于原烧杯中,用热2%HCl洗涤低溶液体积为80ml左右。加1.6g酒石酸。
E) 将溶液以0.4—0.6ml/min 的流速注入已平衡好的阳离子交换柱中,流完后用20ml 2%酒石酸—0.8mol/L盐酸洗涤烧杯即变换柱上的漏斗,并倒入交换柱中,待流完后,依次用80ml 1.5mol/L HCl,60ml 1.75mol/L HNO3洗脱基本元素。
F) 用150ml 4mol/L HCl 洗脱稀土元素。将洗脱液置于电热板上蒸发至5ml,移入50ml小烧杯继续蒸干至1ml,移10ml比色管,用去离子水稀释至刻度,摇匀。进行ICP—AES测定。
注:(1)本法可测定La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Tm、Lu及Y、Sc,检出限为ng/ml左右。
(2)交换柱:阳离子交换树脂--强酸阳1X8H+型,100—200目。交换柱内径8mm, 内装树脂160nm(水中高度),流速为0.4—0.6ml/min。
4) 共沉淀法
A) 沉淀分离基本元素
例:在高纯金(99.999%)中测定微量Mn、Cr、Fe、Mg、Pb、Al、Zn、Cu、Ca等元素。
将样品用王水溶解后,加入H2O2还原 Au3+,半小时后即有游离金析出。此时需加NaOH中和掉HCl后,Au才能完全沉淀析出。如果在酸性溶液中,溶液中将残留1mg/ml的Au, 这对ICP—AES分析亦无影响。
B) 沉淀分离待测元素
例:用In(OH)3共沉淀富集海水中痕量元素,Cr3+、Mn、Co、Ni、Cu、Cd、Pb。海洋样本,PH 9.5时,用In(OH)3定量共沉淀上述元素,沉淀用稀HCl溶解后进行测定,可测定ppt级浓度。
5) 可运用各种化学的方法来分离富集待测元素
这种方法是很多的,如用经典的火法试金法得到的贵金属小粒,溶解后再用ICP—AES测定Au、Pt、Pd、Rb。
木质纤维素类生物质是储量丰富的有机可再生碳资源,主要包含纤维素、半纤维素和木质素三大组分,是制备可持续燃料、化学品及材料的理想原料。这类生物质结构复杂且致密,通过分离技术打破复杂结构是实现选择性转化全......
图(A)亲水膜/疏水膜狭缝的设计思路;(B)油水回收率随狭缝尺寸的变化规律;(C)亲水膜/疏水膜狭缝系统中的反馈机制在国家自然科学基金项目(批准号:U21A20300)的资助下,浙江大学徐志康教授团队......
2024年12月8日,江苏省化学化工学会色谱与分离科学专业委员会成立大会暨首届学术研讨会在南京大学国际会议中心隆重举行。此次会议汇聚了众多高校、企业及科研院所的专家学者和行业精英,共同见证专委会成立,......
记者从中国科学院长春应用化学研究所了解到,该所绿色分离化学与清洁冶金课题组在废旧动力锂电池分离回收新工艺上取得新突破。课题组负责人陈继介绍,我国动力锂电池生产、使用和出口均居世界前列。锂电回收和循环利......
药物的分离纯化是从合成或天然来源中获得的药物混合物中,将目标化合物纯化为高纯度的过程。这是药物研发和制造过程中非常重要的步骤,因为高纯度的药物确保了其安全性和有效性。药物的分离纯化通常涉及以下一般步骤......
南京工业大学教授金万勤团队与南京大学数学系吕勇教授、沙特阿卜杜拉国王科技大学韩宇教授团队等,发现几何学中的球致密堆积问题(也被称为世纪著名的“吻数Kissing Number”问题,早在17......
“玩了一辈子沙子”,这是艾捷博雅生物集团董事长汪群杰对自己的描述。从研究生、博士到博士后,汪群杰一直在做有机硅材料,入职安捷伦后开始接触色谱分离材料,在以硅材料为核心的分离材料上有深厚的沉淀。从安捷伦......
中国科学院院士,著名化工专家,天津大学教授余国琮同志因病医治无效,于2022年4月6日在天津逝世,享年100岁。余国琮,1922年11月18日生于广州。1943年毕业于西南联合大学化工系,1945年获......
近日,由中国科学院大连化学物理研究所研究员关亚风编著的中文专著《微型分离分析仪器与技术》由科学出版社出版发行。微型分离分析仪器具有体积小、便携化、低功耗等优点,适用于在线、快速、野外分析,在环境、生物......
暨南大学化学与材料学院、广东省功能配位超分子材料及应用重点实验室教授陆伟刚/李丹团队在丙烯/丙烷分离研究方面实现新突破。相关研究7月21日在线发表于《自然》。该研究提出了一种新的分离机制——正交阵列动......