发布时间:2019-01-28 14:30 原文链接: MIT赵选贺团队揭示抗疲劳水凝胶设计原理

  水凝胶是人造软骨、关节和椎间盘的理想替代材料。这些应用要求水凝胶具备循环加载下的抗疲劳性能。虽然人们开发了多种高韧水凝胶,但这些水凝胶在多次循环加载下会发生疲劳断裂,它们的疲劳阈值通常只有1-100J/m2。今日,MIT赵选贺团队揭示了抗疲劳水凝胶的设计原理:让疲劳裂纹在扩展中遇到并且断裂比一层高分子链强韧很多的物体,例如纳米晶域等。团队通过引入可控的纳米晶域,可以提高水凝胶的疲劳阈值到1000 J/m2以上。抗疲劳设计原理可以用来指导开发具有长期使用价值的水凝胶设备和器械。

  水凝胶正被广泛应用于医疗器械和生物电子设备等领域,包括可穿戴水凝胶电子1,2,口服水凝胶设备 3,可拉伸水凝胶光纤 4,水凝胶涂层5,以及水凝胶软体机器人等6。水凝胶在器械和设备领域的应用要求水凝胶具备循环加载下的抗疲劳特性。

  近十几年,人们开发了各种高韧水凝胶,其中最著名的例子是双网络水凝胶7,8。增韧水凝胶的原理是在可拉伸的高分子网络中引入机械耗散,阻碍裂纹扩展(参见综述9)。但是这些增韧水凝胶在多次循环加载下的抗疲劳特性通常很差,它们的疲劳阈值只有1-100 J/m2 10。因为疲劳裂纹的扩展只需断裂一层高分子链,并不受额外引入的机械耗散影响。如何设计具有抗疲劳断裂的水凝胶仍是软材料领域的一大难题。

图片.png

图1. 抗疲劳水凝胶设计原理:让疲劳裂纹在扩展中遇到并断裂比一层高分子链强韧很多的物体。

  人体的韧带肌肉大概每年承受几百万次兆帕级的应力,并且保持疲劳阈值在1000 J/m2以上。韧带肌肉中胶原蛋白的有序晶区可能是它们抗疲劳的原因。受生物组织启发,今日发表在《Science Advances》上的文章中 (Science Advances, 5:eaau8528 (2019)),MIT赵选贺团队提出了抗疲劳水凝胶的设计原理:让疲劳裂纹在扩展中遇到并且破坏比一层高分子链强韧很多的物质,例如纳米晶域等(图1)。

  为了验证抗疲劳水凝胶的设计原理,赵选贺团队选用了常见的医用聚合物聚乙烯醇 (PVA),通过冷冻解冻和高温退火,实现可控的纳米晶域。他们首先通过差示扫描量热法(DSC),定量测量了PVA水凝胶在完全干燥和充分溶胀状态下的结晶度(图2)。PVA水凝胶的结晶度随着退火时间的增加而增加,但相应的水含量随之减小,那是因为扩大的晶域会不断消耗水凝胶中具有吸水能力的无定形分子链的含量。他们进一步通过X射线散射定量测量了PVA水凝胶在不同退火时间下的纳米晶域大小和间距。由图2所示,随着高温退火时间的增加,PVA水凝胶纳米晶域尺寸在增加,而相邻晶域的间距在缩小。这种纳米晶域随着退火时间的演化进一步通过原子力显微镜(AFM) 得到了验证。

图片.png

图2. PVA水凝胶的纳米晶域形貌表征

  为了定量表征水凝胶抗疲劳能力,团队成员设计了测试水凝胶疲劳阈值的实验方法。与传统材料的疲劳测试不同,他们在水浴环境进行上万次水凝胶的疲劳加载测试,以避免水凝胶的失水引起的材料失效和裂纹扩展(图3)。通过定量测量疲劳裂纹的扩展曲线,他们发现具有同样PVA含量的化学交联的水凝胶只有10 J/m2的疲劳阈值,这和破坏一层无定形分子链所需要的能量吻合。当PVA水凝胶含有较低的结晶度,测得疲劳阈值仅仅提高到23 J/m2,说明这时的疲劳裂纹的传播依然只是依赖于断裂一层无定形分子链。当水凝胶溶胀状态下的结晶度达到18.9 wt.%时候,他们发现PVA水凝胶的疲劳阈值能够达到1000 J/m2。他们进一步通过单边缺口拉伸和纯剪拉伸进一步验证了这种材料的超高疲劳阈值(图4)。

图片.png

图3.水凝胶疲劳测试实验方法

图片.png

图4.水凝胶疲劳阈值的测量和验证

  更进一步,赵选贺团队提出了一种既能提高PVA水凝胶疲劳阈值,又不牺牲材料柔性和含水量的方法:借助CAD辅助设计电热丝,实现程序化局部加热,选择性地引入有序晶区(图5)。他们演示了两个例子:第一个例子是在裂纹尖端进行局部加热,引入环状晶域;第二个例子是对整个样品引入网格状晶域。这样引入的晶域面积很小,但能够有效地强化裂纹尖端,进而阻碍裂纹扩展;与此同时能够保持整个样品的低模量(114 kPa)和高水含量 (87 wt %)。

图片.png

图5. 抗疲劳水凝胶的设计原理

  他们进一步通过这种方法设计了具有抗疲劳特性的剪纸水凝胶。把材料设计成剪纸,一方面能够进一步提高材料的延展性,另一方面能够提高该材料与其他界面的粘接性。但因为引入过多地缺口,把材料设计成剪纸会急剧降低材料的力学性能。他们通过对切口尖端局部加热,引入局部晶域,设计了具有良好抗疲劳特性的剪纸水凝胶。强化后的剪纸水凝胶强度能够提高14.4倍,并且能够承受3000次大变形循环加载。

  抗疲劳水凝胶的应用

  赵选贺团队提出的抗疲劳水凝胶设计原理简单、普适、高效,可以应用在不同种类的水凝胶中,例如在水凝胶中引入纤维素、纳米粘土颗粒和纳米纤维等。人体器官(例如大脑、脊髓、心脏、肌肉、皮肤等)大多是由水凝胶组成的。长期和人体交互的水凝胶机器和界面,是软材料领域研究的前沿和重点问题之一。除了柔软、高含水量、有生物活性外,现在水凝胶还可以被设计得坚韧和抗疲劳。我们期待在不久的将来,人体和各种机器1,3,6可以实现长期、稳定、高效的交互和融合(图6)。

图片.png

图6. 抗疲劳水凝胶的应用

  参考文献

  1. Lin, S. et al. Stretchable hydrogel electronics and devices. Advanced Materials 28, 4497-4505 (2016).

  2. Liu, X. et al. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proceedings of the National Academy of Sciences 114, 2200-2205 (2017).

  3. Liu, X. et al. A puffer-fish ingestive hydrogel device. Nature communications (2019).

  4. Guo, J. et al. Highly stretchable, strain sensing hydrogel optical fibers. Advanced Materials 28, 10244-10249 (2016).

  5. Yu, Y. et al. Multifunctional “Hydrogel Skins” on Diverse Polymers with Arbitrary Shapes. Advanced Materials, 1807101 (2018).

  6. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017).

  7. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double‐network hydrogels with extremely high mechanical strength. Advanced Materials 15, 1155-1158 (2003).

  8. Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133 (2012).

  9. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672-687 (2014).

  10. Bai, R. et al. Fatigue fracture of tough hydrogels. Extreme Mechanics Letters 15, 91-96 (2017).


相关文章

耐药细菌感染运动部位创面愈合研究获新进展

耐药型细菌感染的创伤愈合因其治疗过程复杂、治疗周期漫长和持续性感染,已经成为日益严峻的公共卫生问题。耐甲氧西林金黄色葡萄球菌(MRSA)是引起创面感染的常见菌种,MRSA感染范围可以从皮肤和软组织的轻......

新研究实现结构化超分子水凝胶动态生长

近日,华东理工大学教授郭旭虹团队提出了一种通过反应扩散控制动态超分子自组装的新策略,该工作发表于《德国应用化学》。生命系统是一个复杂的非平衡态超分子组装系统,受此启发,人们在合成系统中将化学反应网络与......

华东理工大学:实现结构化超分子水凝胶动态生长

近日,华东理工大学教授郭旭虹团队提出了一种通过反应扩散控制动态超分子自组装的新策略,该工作发表于《德国应用化学》。生命系统是一个复杂的非平衡态超分子组装系统,受此启发,人们在合成系统中将化学反应网络与......

揭示生物材料十大新兴趋势,CAS、西湖大学联合发布洞察报告

近日,美国化学文摘社(CAS)与西湖大学(WestlakeUniversity)合作发布了“最值得关注的十大生物材料”洞察报告。这份报告重点介绍了水凝胶、抗菌药物、脂质纳米粒、外泌体,生物墨水,可编程......

新型纳米纤维水凝胶用于促进伤口愈合

近日,华南理工大学教授王小英团队、暨南大学附属第一医院副教授张还添及教授查振刚团队通过利用自组装和化学交联结合的策略,开发出一种具有低硬度、高抗压强度、抗溶胀、可载药和生物降解的胶原纤维状可注射水凝胶......

Nature子刊:武汉大学团队开发基于水凝胶的分子张力荧光显微镜

细胞外基质(ECM)刚性是影响多种生物过程的重要机械线索。然而,对刚性传感的分子机制的理解受到当前细胞力测量技术的空间分辨率和力灵敏度的限制。2023年10月5日,武汉大学刘郑团队在NatureMet......

无需每天服药,新型水凝胶注射液治疗艾滋病更简便

25日报道,美国研究人员发现,一种在适当条件下自组装成凝胶的新注射溶液可以帮助控制艾滋病病毒,这种凝胶在6周内释放出稳定剂量的抗艾滋病病毒药物拉米夫定,这与目前任何可用的疗法均不同。这一研究成果或使患......

我国科学家实现高强韧水凝胶材料新突破

水凝胶材料在生物医学领域展现了广阔的应用前景,成为当前最受关注的生物材料。然而水凝胶材料天生质弱,强度低、韧性差,成为限制其应用的瓶颈难题。尽管当前已有多种提升水凝胶力学性能的方法,例如双网络策略以及......

一款仿生自愈导电水凝胶能促进周围神经再生

自愈导电水凝胶的开发对于电活性神经组织工程至关重要。典型的导电材料如聚吡咯(PPy)通常用于制造人工神经导管。此外,组织工程领域已经朝着透明质酸(HA)水凝胶等产品的使用方向发展。尽管HA修饰的PPy......

中科院贺超良:新型水凝胶,可用于无缝合伤口闭合!

每年数百万人遭受各种类型的创伤,包括意外创伤和手术切口造成的创伤。组织损伤后,大出血和伤口感染是导致死亡的主要原因。尽管缝合线和缝合钉是目前临床治疗中最常见的伤口闭合方法,但耗时的手术和苛刻的技术要求......