发布时间:2013-12-09 04:14 原文链接: Nature子刊:基因编辑揭开细菌基因组秘密

  由美国伊利诺伊大学香槟分校化学和生物分子工程系的赵惠民教授(音译,Huimin Zhao)带领的一个研究团队指出,他们利用一种创新的DNA工程技术,发现了隐藏在细菌基因组中的潜在的、有价值的功能。这项研究成果发表在12月5日的Nature Communications杂志上。

  每种细菌的基因组中,都含有合成不同化合物的基因。这些化合物包括天然抗生素、抗真菌剂和其它生化药剂,能帮助细菌抵抗不利的微生物,因此具有很大的医学应用价值。细菌产生这些化合物所需的酶的编码基因,经常被归为一些集群(gene cluster,基因簇)。这些基因能够编码在生产一种或几种产物的生化途径中共同发挥作用的蛋白。

  如果一个菌落正在生产一种生物活性化合物(有时称为天然产物),科学家们可以将这种产物分离出来,研究它的结构和功能,发现其潜在的作用。通过筛选不同细菌和其它微生物种类产生的化合物,人们已经发现了很多天然产物。

  然而,到目前为止,所发现的化合物只代表细菌有能力生产的化合物的一小部分。

  细菌很精通生存之道,它们的基因组就是一套应对各种环境状况的应变计划。就像画家只用当天需要的颜色制定一个调色板,一种细菌只会表达某些基因,合成有助于它在当前环境中茁壮生长的化合物。某种特定情况下不需要的基因簇的常量表达,将是一个很大的浪费。

  这种能量守恒对细菌大有好处,但是对希望发现新的天然产物的研究人员却很不利。这是Zhao和同事们开始该项目时,希望能解决的一个挑战。Zhao说:“细菌基因组序列分析表明,有很多隐藏的或者沉默的生化途径还没有被发现,它们需要正确的信号,来开启整个基因簇的表达。”

  研究人员利用几种策略,来“欺骗”细胞激活那些很少用的、“隐藏的”的基因簇,例如在各种恶劣条件下培养细菌,或将一种细菌的一套基因插入到另外一种细菌的基因组中。这些技术包括劳动密集型的反复试验,而且不能保证会成功。

  Zhao的团队,把精力花在改编细胞内的基因表达调控,而不是试图去操控环境。他们采用Zhao实验室以前开发的一种基因工程方法(称为DNA assembler),将小部分DNA插在一个隐藏的基因簇中的每个基因之间。增加的这部分DNA是启动子,是帮助调控何时以及有多少邻近基因表达的专门区域。通过增加正确的启动子,Zhao和同事们迫使细胞提高基因簇中每个基因的表达。

  DNA assembler方法在一个单一步骤中连接许多不同的DNA片段的能力,使得Zhao的策略成为可能。以前的基因编辑方法,限制研究人员进行一系列连续性改变,哪怕想在一个很小的基因簇的每个基因上增加一个启动子,都需要非常多的实验步骤。相比之下,Zhao说:“事实上,我们能建立整个基因簇,这最终使我们更加灵活,因为我们能增加不同的启动子,”确保在基因簇中的每个基因都被持续激活。

  这项研究中,研究人员修改了来自一种土壤细菌——灰色链霉菌(Streptomyces griseus)的一个隐藏的基因簇(包含6个基因)。他们在基因簇中的每个基因上增加了一个启动子,使表达增加,将基因簇插入一种近缘的细菌链霉菌(Streptomyces lividans)中,这种细菌在实验室中更容易生长。

  由此产生的细菌菌株表达了以前沉默的基因簇中的所有基因,产生了一些以前不知道的化合物。这些化合物属于一类称为多环tetramate macrolactams(或PTMs)的天然产物,其中许多具有有用的生物医学价值。通过检测丢失6个基因其中一个的菌株所产生的化合物,研究人员能够发现每个基因所编码蛋白的功能,从而更好的了解细菌如何合成PTMs。

  Zhao认为,这项工作是迈向一个更大目标的重要一步:开发一种通用的、自动化的高通量方法,来改造靶标试验生物中的任何一种生化途径。“我们需要技术平台的建立,那么我们就可以继续在哺乳动物系统、植物细胞和微生物中进行研究。”然而,他的最终目标是发现有用的生化药剂,“很有可能,一些化合物会变成新药,这是非常令人兴奋的。”(生物通:王英)

  注:Huimin Zhao(音译赵惠民)教授,早年毕业于中国科技大学,是生物合成领域的国际著名专家,现任美国伊利诺伊大学香槟分校化学和生物分子工程学系 Centennial讲席教授,兼任化学系、生物化学系、生物物理系和生物工程系教授。已在Nature、Science、Angew. Chem.等杂志发表学术论文130余篇。迄今共获得学术奖励10余项,包括2010年当选美国AAAS Fellow,2012年当选美国Guggenheim Fellow。担任学术期刊ACS Synthetic Biology,Journal of Industrial Microbiology and Biotechnology和Scientific Reports编辑,以及ACS Catalysis副编辑。

相关文章

超千万预算山东大学采购质谱仪等

山东大学2024年4至5月政府采购意向为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将山东大学2024年4至5月政府采购意向......

全自动药敏鉴定仪细菌自动化鉴定系统采购项目公开招标

项目概况2023年度攻坚第六批医疗设备购置项目采购项目的潜在供应商应在辽宁省沈阳市浑南区同方大厦(浑南三路1-8号)B座1402-1403获取采购文件,并于2024年04月01日09点30分(北京时间......

合作加速创新BIOCHINA2024生物产业链再聚金鸡湖畔

BIOCHINA2024(EBC)第九届易贸生物产业大会暨易贸生物产业展于2024年3月15日在苏州国际博览中心正式开幕。BIOCHINA以“展览-大会-活动”三大体系,联动科研、产业、临床和政府机构......

Cell:某些遗传性眼病中的视力丧失可能是由于肠道细菌进入眼睛引起

在一项新的研究中,来自中国中山大学、广州医科大学、南华大学、南方医科大学和英国伦敦大学学院等研究机构的研究人员在小鼠中发现,某些遗传性眼病中的视力丧失可能是由肠道细菌引起的,而且可能可以通过抗菌剂治疗......

Brain:科学家识别出参与阿尔兹海默病中神经元易感性发生的关键基因

神经变性疾病早期阶段的特征是离散脑细胞群中蛋白质的积累以及这些脑细胞的退化,对于大多数疾病而言,这种选择性的易感性模式是无法解释的,但其对于病理性机制或许能提供重要的见解。阿尔兹海默病是世界上主要的痴......

2024年中国基因编辑技术发展现状及趋势分析CRISPR/Cas优势明显

行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;......

厚积薄发我国科学家揭开表观遗传“神秘面纱”

长期以来,人们普遍认为,脱氧核糖核酸(DNA)决定了生物体的全部表型。但问题来了,在相同环境中成长的同卵双胞胎,身高、肤色、性格、健康状况等并非完全相同,这是为什么?为了揭开表观遗传的“神秘面纱”,科......

《生物安全法案》听证会通过对国内相关企业有何影响

北京时间6日晚间10时许,美参议院国土安全委员会举行了提案听证会,美参议院版本《生物安全法案》(S.3558)在会上以11-1的票数被通过,下一步,委员会预计会先进行内部的议案整理/修改工作,再将《生......

基因解码揭示人类无尾之谜

纽约大学格罗斯曼医学院(NYUGrossmanSchoolofMedicine)的研究人员进行的一项新研究表明,我们远古祖先的基因变化可以部分解释为什么人类不像猴子那样有尾巴。这项研究成果最近发表在《......

人与猿类如何在进化中“甩掉”尾巴

猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......