发布时间:2014-10-09 10:15 原文链接: Nature重大突破:CRISPR也可编辑RNA

  一种用来编辑基因组中DNA指令的强大科学工具现在也可以应用于RNA。来自加州大学伯克利分校和劳伦斯伯克利国家实验室的一个研究人员小组,证实借助于一种方法可以编程CRISPR/Cas9蛋白复合物在序列特异性的靶位点识别并切割RNA。这一研究发现有可能改变RNA功能研究的模式,为检测、分析和操控RNA转录物铺平了道路。相关论文发表在9月28日的《自然》(Nature)杂志上。

  由生物化学家、CRISPR/Cas9复合物研究权威人士Jennifer Doudna领导的这一研究小组,揭示出Cas9酶可与称作为“PAM”( protospacer adjacent motif)的短DNA序列共同作用,识别并结合到单链RNA(ssRNA)特异位点上。他们将这一RNA靶向性CRISPR/Cas9复合物命名为RCas9。

  Doudna说:“利用专门设计的PAM递呈寡核苷酸(PAMmers),可以让Cas9特异定向结合或切割RNA靶点,同时避开对应的DNA序列,还可利用它从细胞中分离出特异的内源性信使RNA。我们的研究结果揭示出了PAM结合与RCas9底物选择之间的基本联系,突显了RCas9无需遗传诱导标签,在可编程RNA转录物识别方面的应用。”

  从更安全、更有效的药物,清洁、绿色、可再生燃料,到空气、水及土地的净化和恢复,遗传工程细菌和其他的微生物有潜力生成一些有价值的商品及完成一些重要的服务。为了探索微生物的巨大潜力,科学家们必须要能够精确地编辑它们的遗传信息。

  近年来,CRISPR/Cas复合物成为了实现这一功能的最有效的工具之一。CRISPR(Clustered regularly interspaced short palindromic repeats, 规律成簇的间隔短回文重复)是细菌免疫系统的中心组成部分,其负责序列识别。RNA引导的Cas9酶则负责在特异的序列位点剪断DNA链。

  利用CRISPR和Cas9可精确编辑靶基因组中的DNA指令来生成所需的蛋白质类型。在特异的位置切割DNA可以除去旧的DNA指令和/或插入新指令。然而直到现在,人们都认为不能够将Cas9用于将这些DNA指令译为所需蛋白质的RNA分子。

  Doudna研究组成员、论文主要作者Mitchell O'Connell说:“就像可以利用Cas9以一种序列特异性方式来切割或结合DNA一样,RCas9可以一种序列特异性方式切割或结合RNA。

  在早些时候的一项研究中Doudna和她的研究小组证实,Cas9之所以可能具有基因组编辑能力是因为PAM的存在,PAM标记出了切割的位点,并激活了Cas9酶的切割活性。在这项最新的研究中,Doudna、Mitchell和合作者们证实,以一种相似的方式PAMmers还可以促进对靶ssRNA的位点特异性内切核苷酸切割。他们利用来自化脓链球菌(Streptococcus pyogenes)的Cas9酶,针对一组靶RNA和DNA完成了各种体外切割实验。

  Doudna说:“尽管RNA干扰已被证实可用于操控某些生物体内的基因调控,我们仍抱着强烈的兴趣开发出了RCas9这一基于核酸的RNA识别系统。现在我们清楚了RCas9的RNA识别分子基础,就只需要设计并合成出一条匹配的导向RNA和互补PAMmer。”

  研究人员想象着RCas9将具有广泛的潜在应用。例如,将RCas9与一种蛋白质翻译起始因子连接到一起靶向特异的mRNA,可以作为一种设计翻译因子来“上调”或是“下调”由这一mRNA合成的蛋白质。

  Mitchell 说:“将RCas9附着到一些小珠子上,可用来从细胞中分离出RNA或是天然的RNA-蛋白质复合物用于下游的分析或检测。将RCsa9与选择蛋白质结构域融合可以增加或是除去特异的内含子或外显子,而将RCas9与荧光蛋白连接到一起还可用于观察活细胞中的RNA定位和运输。”

相关文章

重磅!因美纳将收购SomaLogic,3.5亿美元现金!

将高度互补的蛋白质组学技术专长与因美纳行业领先的产品创新和全球市场影响力相结合为因美纳在广阔且持续增长的市场中实现增长奠定基础自2021年末以来,因美纳与SomaLogic即在蛋白质组学联合开发方面开......

阿里云生物基础大模型登上Nature子刊可挖掘核酸、蛋白质之间的内在联系

6月19日消息,国际顶级期刊《NatureMachineIntelligence》发表了阿里云AIforScience的研究成果LucaOne。这是业界首个联合DNA、RNA、蛋白质的生物大模型。该大......

植物减数分裂过程中染色体精准分离调控获揭示

近日,华南农业大学教授王应祥团队在国家自然科学基金等项目的资助下,研究揭示了模式植物拟南芥泛素连接酶后期促进复合物/细胞周期体(APC/C)调控减数分裂染色体正确分离的分子机制。该研究丰富了蛋白质泛素......

科学团队创制荧光探针实现蛋白质成簇/解聚活细胞监测

华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心教授郭志前团队,创制了激活型化学遗传学荧光探针,首次在活细胞中监测蛋白质成簇/解聚的精确状态。相关研究近日作为VIP(VeryImpor......

mRNA“戴帽”后能多产两百倍蛋白质

日本名古屋大学研究团队在最新一期《自然·生物技术》杂志上发表了一项名为“内部帽启动翻译”(ICIT)机制的创新研究。该机制下的仿佛戴着帽子的mRNA可产生200倍以上的蛋白质,为治疗癌症和蛋白质合成异......

科学家从蛋白质动态层面解答早期胚胎发育失败原因

中国科学院脑科学与智能技术卓越创新中心/上海脑科学与类脑研究中心研究员刘真、孙怡迪,博士后朱文成团队,与复旦大学附属中山医院生殖医学中心主治医师木良善团队、上海交通大学医学院研究员李辰团队合作,描绘了......

我国学者在蛋白质酪氨酸泛素化方面取得进展

图FUSEP化学生物学技术用于系统研究赖氨酸和非赖氨酸泛素化的位点信息在国家自然科学基金项目(22137004、22307062)资助下,清华大学药学院尹航教授团队在蛋白质泛素化研究领域取得新进展,开......

专家学者盘点近两年AI发展——加速应用落地变革科研范式

当前人工智能技术和产业有哪些热点?我国人工智能产业发展呈现怎样的特点?12月12日举行的中国科学院人工智能产学研创新联盟2024年会,为这些问题提供了答案。本次年会以“人工智能助力科研范式变革(AIf......

植入式传感器可持续监测炎症水平

受大自然启发,美国西北大学生物工程师团队开发出一种植入皮下的传感器,可实时跟踪活体动物蛋白质水平的波动,测量炎症标志物的变化。相关论文发表在《科学》杂志上,标志着医学检测领域的一个重要里程碑。为了检测......

热烈祝贺黄超兰教授荣获“ClinicalandTranslationalProteomicsAward”

北京时间10月23日,在德国德雷斯顿举行的2024HUPO大会颁奖典礼上,备受瞩目的“ClinicalandTranslationalProteomicsAward”(临床转化蛋白质组学奖)荣耀加冕于......