发布时间:2014-01-21 10:06 原文链接: Nature重要论文:阐析生物学“暗物质”

  在我们的基因组中有一些基因并不编码蛋白质,而是生成长链非编码RNA。近日来自瑞士洛桑大学、洛桑联邦理工学院(EPFL)和瑞士生物信息学研究所(SIB -SIB)的生物学家们,研究了这些知之甚少的基因类型的功能。发现其中一些基因历经进化过程保存下来,存在于从人类到青蛙等11个物种之中。研究结果发表在1月19日的《自然》(Nature)杂志上。

  基因的“经典”作用是,生成对细胞功能至关重要的蛋白质。不过,我们的基因组也编码了一些生成长链非编码RNAs的基因,它们的功能颇为神秘。自 4、5年前人们知道在人类和小鼠的基因组中存在有数以千计、这样仍了解甚少的基因以来,一直想了解它们是如何被激活的?以及在哪些器官中被激活?这样的生物学“暗物质”有无意义?

  现在来自瑞士洛桑大学整合基因组学中心(CIG)的Henrik Kaessmann教授领导研究小组,编译出了11个物种长链非编码RNAs的目录。通过采用一种进化方法,他们发现大约有2500种长链非编码RNAs 最早出现在至少9000万年前大多数有胎盘类哺乳动物(Placental Mammal)的共同祖先之中。从功能的角度来看,这些“古老”的基因具有特别的意义。

  论文的第一作者、洛桑联邦理工学院发育基因组学实验室科研工作者Anamaria Necsulea,将这些长链非编码RNAs的调查范围扩展至涵盖6种灵长类动物(人类、猕猴、黑猩猩、倭黑猩猩、大猩猩和猩猩)、小鼠、负鼠(一种有袋类哺乳动物)、鸭嘴兽(一种单孔目哺乳动物,产卵并用乳汁喂养幼崽),以及由鸡(鸟类)和青蛙(两栖类动物)组成的一个“外延组”。所有这些物种的共同祖先可追溯至3.5亿多年前。

  在进化过程中保留的基因

  生物学家们利用CIG的基因组学平台和SIB –SIB的重要IT计算机中心,鉴别了调查的11个物种几种主要器官中的长链非编码RNAs。Necsulea说:“多亏有了生物信息学,我们发现了以往未定位出任何基因的基因组位点生成的一些RNA序列。我们随后分析了这些基因,确定了它们是否编码蛋白质。由此,根据不同的物种,我们鉴别出了3000- 15000种非编码RNA基因。”

  在研究的第二阶段,通过比较不同的物种科学家们精确地找到了这些基因在进化史中出现的位置。有11,000种长链非编码RNAs为所有灵长类动物所共有,2,500种可追溯至大约9000万年前人类和小鼠的共同祖先。只有100种这样的基因起源于所有11个物种的共同祖先。“其中一个重要的研究发现是,调控蛋白质编码基因活性的相同转录因子也控制了这些非编码基因的活性。更令人注目的是,我们发现有2,500种最古老的长链非编码RNA基因受到对于胚胎发育至关重要的一些因子的调控。这表明,在有胎盘类哺乳动物进化过程中保存下来的2500种长链非编码RNAs里,相当大一部分有可能在胚胎发育中特异性地发挥功能。”

  互作新网络

  在研究的第三阶段,科学家们阐明了包括长链非编码RNAs和蛋白质编码基因的一个互作网络。他们发现,一些非编码基因与参与大脑功能或精子发生的一些蛋白质编码基因密切相关,表明这些长链非编码RNA基因具有一些相似的功能。

  就本研究中鉴别的一种最古老的长链非编码RNA基因——H19X基因来说,它与有胎盘类哺乳动物H19基因有关联,帮助揭示了它的功能。 Anamaria Necsulea说:“H19阻止了胎盘在母体子宫内过度生长。我们可以推测H19X也促成了这一功能。我们现在计划在小鼠中让这一基因丧失功能,以测试它在胎盘中所起的作用。”

  在RNA生成基因子类别中,这些长链RNA基因是否比最原始时更有用?通过在11种不同的物种中追踪它们,新研究以前所未有的规模揭示了,我们基因组的一些“暗物质”似乎在发育以及人体最重要的一些器官的功能中发挥作用。未来的实验研究将进一步阐明才向我们显露它们首批秘密的这些基因的作用。

相关文章

我国科研人员找到导致反复“试管”失败的“基因钥匙”

10月16日,记者从中信湘雅生殖与遗传专科医院获悉,该院研究员林戈、副研究员郑伟团队,联合山东大学、上海交通大学医学院等单位的科研团队开展合作攻关,系统揭示了卵子与早期胚胎质量问题导致女性反复“试管”......

衰老如何改变我们的基因

衰老对身体产生的可见影响有时与基因活动的无形变化有关。DNA甲基化的表观遗传过程会随着年龄增长而变得不再精确,造成基因表达的变化。而这种变化与随着年龄增长而出现的器官功能衰退和疾病易感性增加有关。如今......

为何有人衰老更快?揭秘背后的400个基因

有些人比同龄人更显年轻,而有些人看着更显老;有些人年逾九旬仍身心康健,而另一些人早在数十年前就饱受糖尿病、阿尔茨海默病或行动障碍的困扰;有些人能轻松应对严重摔伤或流感侵袭,而有些人一旦住院就再难康复。......

科学家发现玉米耐热关键基因

近日,西北农林科技大学玉米生物学与遗传育种团队联合华中农业大学玉米团队在《植物生理学研究》发表论文。研究初步揭示了ZmGBF1-ZmATG8c模块通过自噬途径调控玉米耐热性的分子机制。随着全球气温持续......

降本提效!我团队研制出系列牛用基因芯片

记者21日从国家乳业技术创新中心获悉,该中心技术研发团队成功研制出奶牛种用胚胎基因组遗传评估芯片和“高产、抗病、长生产期”功能强化基因组预测芯片。该系列基因芯片具有完全自主知识产权,填补了我国基因芯片......

新研究:阻断或抑制一种特殊基因可选择性杀伤癌细胞

国际期刊《内分泌学前沿》日前刊登的一项新研究揭示,一种特殊基因对肠道吸收维生素D及其后续代谢过程至关重要,阻断或抑制该基因能够选择性抑制癌细胞生长。这一发现在癌症治疗等精准医学领域具有广阔应用前景。维......

我国科学家发现大豆种子油蛋比调控关键基因

记者从安徽农业大学获悉,该校王晓波教授团队联合中国农业科学院作物科学研究所邱丽娟、李英慧研究员团队,解析了关键基因对大豆种子油脂和蛋白比例(油蛋比)的调控机制,为高油或高蛋白大豆品种选育提供了新方向。......

茶叶大小谁定?这个基因很关键

茶树是以收获新梢为主的叶用经济作物,茶芽大小不仅直接影响鲜叶的产量和品质,还与茶类适制性密切相关。解析茶树芽大小的遗传调控机制,有助于改良茶树品种、提高茶叶产量。近日,中国农业科学院茶叶研究所种质资源......

这项研究找到了玉米穗叶结构候选基因

玉米作为全球重要的粮食、饲料和工业原料作物,其高产对保障粮食安全至关重要。近日,东北农业大玉米遗传育种团队完成的研究在《农业科学学报(英文)》(JournalofIntegrativeAgricult......

科学家找到一个让水稻更耐冷的关键基因

水稻作为起源于热带或亚热带的粮食作物,其生长发育对低温胁迫敏感。伴随全球气候变化加剧,极端低温事件发生频率显著上升,发掘耐冷基因并解析分子机制,有利于水稻高产稳产遗传改良。目前,利用自然群体挖掘的水稻......