肺作为一个复杂的多功能器官,对人类生存至关重要。肺脏自近端到远端包括气管、支气管、小支气管和肺泡等结构,对气体交换和抵御病原体入侵至关重要。这些不同位置的结构,其上皮细胞的类型也不同。在小鼠的气管和大支气管中,肺上皮细胞包括纤毛细胞(ciliated cell)、棒状细胞(club cell)、杯状细胞(goblet cells)和未分化的基底细胞(basal cell)【1】。小支气管上皮细胞类型包括纤毛细胞、棒状细胞和神经内分泌细胞(neuroendocrine cell)。肺泡上皮细胞主要包括I型肺泡上皮细胞(alveolar type 1 cell, AT1 cell)和II型肺泡上皮细胞(alveolar type 2 cell, AT2 cell)【1】。这些类型的细胞对维持肺稳态、功能和促进肺损伤修复非常重要。
不同位置的上皮细胞能维持并修复各自区域的上皮层,文献报道basal cells、club cells和AT2 cells能分别维持并修复气道、支气管和肺泡处的损伤【2】。有的上皮细胞具有更强大的分化能力,有研究发现在流感病毒引起的肺损伤修复过程中,P63+Krt5+ basal cell能分化为club cell、AT1和AT2 cell。还有研究发现当去除basal cell后,上皮细胞club cell能再去分化为basal cell以响应肺损伤修复。除了以上这些干细胞类型,近年来还有一种新的可能存在的肺干细胞被提出,它位于小支气管与肺泡交界处bronchioalveolar duct junctions(BADJs),共表达club cell分子标记Secretoglobin1a1 (Scgb1a1 or CC10) 和AT2 cell分子标记Surfactant Protein C (Sftpc or SPC),被称为支气管肺泡干细胞(bronchioalveolar stem cells, BASCs)【3】。以往的研究通过抗体染色、细胞分选、类器官培养等体外方法研究BASCs的功能,而BASCs缺乏独特的分子marker,作为一种新的肺多能干细胞在体内肺损伤修复中承担什么角色一直存在争论,传统的谱系示踪技术并不支持BASCs的存在以及参与肺修复再生的功能。
2月18日,中国科学院生物化学与细胞生物学研究所周斌研究组、季红斌研究组以及中国科学院广州生物医药与健康研究院彭广敦研究组合作在Nature Genetics在线发表了题为Lung regeneration by multipotent stem cells residing at the bronchioalveolar duct junction的研究成果。该研究利用双同源重组系统(Cre-loxP 和Dre-rox)发现位于支气管肺泡交界处的肺支气管肺泡干细胞具有多种肺上皮细胞分化的潜能,并结合多种小鼠损伤模型揭示了这群干细胞在体内具有再生肺脏的能力,为肺脏的修复和再生研究提供了新的研究方向及理论基础。

在这项研究中,研究人员利用基于Cre-loxP和Dre-rox双同源重组的报告基因小鼠R26-RSR-LSL-tdTomato,并结合能特异性标记CC10+细胞的Scgb1a1-CreER小鼠和特异性标记SPC+细胞的Sftpc-DreER小鼠,通过交配获得Scgb1a1-CreER; Sftpc-DreER; R26-RSR-LSL-tdTomato(BASCs tracer)三基因型小鼠来特异性标记CC10+SPC+ BASCs。通过体内验证,证明此策略能特异性地标记示踪BASCs。
结合支气管损伤(Naphthalene诱导)和肺泡损伤(Bleomycin诱导)两种模型,研究人员发现,在支气管损伤后BASCs能分化为支气管上皮club cell和ciliated cell,而在肺泡损伤后BASCs又能分化为肺泡上皮AT2和AT1 cell,证明了BASCs的分化多能性。同时,研究人员构建了一种新的基于双系统并用于克隆分析的新报告小鼠R26-Confetti2,通过克隆分析在单个细胞水平上揭示了BASCs的多向分化潜能。进一步,研究人员还通过对BASC进行深度单细胞RNA测序分析,鉴定出了新的BASCs特征性分子,揭示了BASC在转录组图谱上位于club cell和AT2 cell之间,并发现BASCs内部也具有一定的异质性,反映了其向不同潜能分化的干细胞特征。
总的来说,体内肺多能干细胞BASCs的发现以及其分化功能的鉴定将为肺疾病治疗方法、肺脏的损伤修复以及再生医学研究提供新的思路。

图注:肺多能干细胞BASCs能够促进肺损伤修复再生。利用BASCs-tracer可以特异性标记并示踪CC10+SPC+ BASCs。在支气管损伤后,BASCs能分化为支气管上皮club cell、ciliated cell,而在肺泡损伤后BASCs能分化为肺泡上皮AT2和AT1 cell。
据悉,周斌研究员,季红斌研究员,彭广敦研究员为该论文共同通讯作者。周斌组博士后刘巧珍,博士生刘扩,景乃禾组博士生崔桂忠为该论文共同第一作者。该研究得到了生化细胞所的景乃禾研究员和曾艺研究员、暨南大学的蔡冬青教授和田雪莹教授、阜外医院的胡盛寿教授和聂宇教授、交通大学的任涛教授和黄荷凤教授等大力支持。
参考文献:
1、Morrisey, E. E. & Hogan, B. L. Preparing for the frst breath: genetic and cellular mechanisms in lung development. Dev. Cell 18, 8–23 (2010).
2、Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).
3、Kim, C. F. et al. Identifcation of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).
近日,南京大学教授曹毅、四川大学教授魏强以及合作者在《自然-通讯》上发表研究成果。研究深入探讨了动态刚度增强细胞力所带来的功能性影响,发现快速循环刚度变化能让细胞在原本无法移动的软基底上实现高速迁移。......
如何精确指挥细胞执行特定任务,是合成生物学发展的关键挑战。7月31日,中国科学院深圳先进技术研究院研究员陈业团队联合湖南省农业科学院单杨团队在《自然-通讯》发表最新研究。他们建立了一套全新的生物信号处......
研究团队借助新型光遗传学工具筛选广谱抗病毒化合物。图片来源:美国麻省理工学院美国麻省理工学院领衔的研究团队借助创新性光遗传学技术,鉴定出3种能激活细胞天然防御系统的化合物——IBX-200、IBX-2......
近日,生命科学集团赛多利斯已成功完成对BICO集团旗下MatTek公司,包括Visikol的收购,相关交易于2025年4月对外宣布。在获得监管机构批准并满足其他常规交割条件后,该交易于2025年7月1......
在生命的微观世界里,细胞分裂时有着严格的染色体分配原则。按照经典遗传学和细胞生物学理论,细胞有丝分裂或减数分裂后,每个子细胞核都应该至少获得完整的一套单倍体染色体,这样才能保证细胞正常发育和发挥功能。......
根据市科技计划项目管理办法有关规定,现将上海市2025年度关键技术研发计划“细胞与基因治疗”拟立项项目予以公示。公示链接:http://svc.stcsm.sh.gov.cn/public/guide......
5月26日,京津冀国家技术创新中心发布《国家重点研发计划颠覆性技术创新重点专项2025年度细胞与基因治疗领域项目申报指引》。该项目面向基础性、战略性重大场景,聚焦细胞与基因治疗领域关键核心技术环节,形......
4月30日,神舟十九号飞船携空间站第八批空间科学实验样品顺利返回地球。其中,中国科学院深圳先进技术研究院(以下简称深圳先进院)医药所能量代谢与生殖研究中心雷晓华研究员团队的“太空微重力环境下人多能干细......
人工智能正以前所未有的速度重塑细胞生物学研究。从高分辨率成像到细胞行为动态分析,AI技术不仅提升了数据处理的精度与效率,同时随着AI与生物学、医学等学科的深度融合,其在细胞研究中的应用正不断突破边界,......
上海市科学技术委员会关于发布2025年度关键技术研发计划“细胞与基因治疗”项目申报指南的通知沪科指南〔2025〕5号各有关单位:为深入实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《......