来自Weizmann研究所的科学家们发现,从成体细胞中除去一种蛋白质可使得它们有效地回到干细胞样状态。
胚胎干细胞具有治疗并治愈许多医学疾病的巨大潜力。这也正是2012年的诺贝尔奖被授予用皮肤细胞生成诱导胚胎样干细胞(iPS细胞)这一研究发现的原因。然而这一过程一直以来都极其的缓慢且低效,生成的干细胞还不能完全用于医学用途。
来自Weizmann研究所Yaqub Hanna博士实验室的新研究将大大改变这种状况:他和他的研究小组揭示出了阻止干细胞生成的“刹车”,并发现松开这一刹车不仅可以同步重编程过程,还可将重编程效率从目前的不到1%提高到100%。这些研究发现或能帮助推动生成医用干细胞,并增进我们对于成体细胞能够恢复原始的胚胎状态这一神秘过程的理解。
胚胎干细胞就是指那些还没有经受任何“特化过程”的细胞;因此它们能够生成身体中所有的细胞类型。这就是它们极其具有价值的地方:它们能够用于修复受损组织,治疗自身免疫性疾病,甚至用于生成移植器官。然而由于利用率和伦理关注,利用取自胚胎的干细胞尚存在问题。
2006年,日本京都大学的山中伸弥领导的一个研究小组发现有可能实现对成体细胞“重编程”,点燃了利用干细胞的新希望。通过将4个基因插入到成体细胞的DNA中,就生成了这些“诱导多能干细胞”(iPSCs)。尽管这是一个重大的突破,重编程过程仍然满是困难:它需要4周的时间;无法协调细胞之间时间同步;并且最终实际上只有不到1%的处理细胞变成了干细胞。
于是Hanna和他的研究小组提出:在大多数细胞中是什么主要障碍(或存在一些什么障碍)阻止了成功实现重编程?在他的博士后研究中,Hanna曾利用一些数学模型表明有一个障碍对其负责。Hanna第一个确认了在生物学上需要试验数据来支持模型。当前的研究不仅提供了证据,还揭示出了这一障碍的特性,表明除去它可以显著提高重编程。
Hanna的研究小组与Weizmann研究所以色列结构蛋白组学中心基因组学部门的成员展开合作,侧重研究了功能未知的蛋白MBD3。MBD3之所以能引起他们的关注是因为,它表达于发育每个阶段身体的每一个细胞中。这相当的罕见:一般情况下,大多数的蛋白质类型都是在特定的时间,由特定细胞生成,且具有特定的功能。
该研究小组发现了这一蛋白质普遍表达规律之外的一个例外:在受孕后的头三天不表达。正是在这三天中受精卵开始分裂,初生胚胎还是一个最终可供给机体所有细胞类型的生长多能干细胞球。从第四天开始,分化启动并且细胞开始丧失它们的多能状态。就是在这时MBD3蛋白才第一次出现。
这一发现对于生成医用iPSCs具有重大的意义。山中伸弥利用病毒插入4个基因,然而出于安全原因,重编程细胞没有被用于患者。且这一过程只有大约 0.1%较低成功率。研究人员证实,从成体细胞中除去MBD3可提高效率,加速这一过程达几个数量级。生成干细胞所需的时间从4周缩短至8天。一个额外的收获是,由于细胞同时经历重编程,科学家们现在能够第一次逐步对其进行追踪,揭示它的运作机制。Hanna指出,他的研究小组所取得的成果是基于对胚胎发育自然信号通路的研究:“从事重编程研究的科学家们可以通过更深入地了解胚胎干细胞自然生成的机制来从中受益。毕竟,自然以最有效地方式使得它们处于最健康的状态。”
近日,中国医学科学院北京协和医院赵海涛团队与中国医学科学院蛋白质组研究中心/基础医学研究所质谱中心孙伟团队携手攻关,在胆管癌治疗领域取得重大突破。他们的研究首次将尿液蛋白质组学与单细胞、空间转录组学相......
中南大学 2025年11月政府采购意向公开为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将中南大学2025年11月......
日本研究人员参与的一个国际团队近日在英国《自然-通讯》杂志发表论文说,一种蛋白质在实验鼠精子与卵子结合过程中发挥关键作用,由于人体内也有这种蛋白质,这项成果可能有助于诊疗男性不育。日本熊本大学和大阪大......
为什么不同生物在适应相似环境时,会独立演化出相似的功能?一项最新研究从蛋白质的“高阶特征”层面揭示了这一生命演化奥秘的重要机制。这项研究由中国科学院动物研究所邹征廷研究员团队完成,成功利用人工智能领域......
衰老对海马体(大脑中负责学习和记忆的区域)的影响尤为严重。如今,旧金山加州大学的研究人员发现了一种在该衰退过程中起核心作用的蛋白质。这项研究成果于8月19日发表在《自然—衰老》期刊上。科学家们确认FT......
2025年8月9日,备受瞩目的2025年全国糖生物学会议暨第六届全国糖化学会议在四川成都正式开幕。本届盛会由中国生物化学与分子生物学会糖复合物专业分会、中国化学会糖化学专业委员会、安特百科(北京)技术......
德国莱布尼茨老龄研究所团队在一种名为鳉鱼的淡水鱼大脑中发现,随着年龄增长,细胞内合成蛋白质的“工厂”——核糖体,在制造某一类关键蛋白质时出现卡顿,从而引发一连串恶性循环,导致细胞功能不断衰退。这或许是......
近日,湖南大学生物学院生物与化学质谱实验室岳磊教授团队在蛋白质质谱成像(MSI)领域取得重要突破。团队创新性地提出了组织蛋白质成像新策略:HydroWash。该方法创新性地将组织洗涤与明胶水凝胶调控相......
将高度互补的蛋白质组学技术专长与因美纳行业领先的产品创新和全球市场影响力相结合为因美纳在广阔且持续增长的市场中实现增长奠定基础自2021年末以来,因美纳与SomaLogic即在蛋白质组学联合开发方面开......
6月19日消息,国际顶级期刊《NatureMachineIntelligence》发表了阿里云AIforScience的研究成果LucaOne。这是业界首个联合DNA、RNA、蛋白质的生物大模型。该大......