发布时间:2017-06-20 10:02 原文链接: NatureMater:醌类有机材料大幅提高水系电池寿命

  电动车和电网储能等大规模电池应用是世界关注的焦点,同时电池技术的安全性和可持续发展也对行业提出了重大挑战。时有报道的多例智能手机和电动汽车电池着火事件,突显了当下锂离子电池使用可燃性非水电解液背后存在的安全隐患。而水系电池以不可燃的水溶液作为电解液,与锂离子等非水电池相比,具有明显的安全、廉价、环境友好等特点;再加上水系电池经过数十年来的使用所确立的系统可靠性,非常适用于大规模的储能领域。然而,现有的水系电池普遍存在循环寿命短的问题,使其未能在上述领域发挥应有的作用。

  对各种水系电池来说,制约其寿命的短板几乎都在组成部件中的负极材料。目前用于水系电池的负极材料或多或少地存在着结构和化学稳定性的问题。这在三大类水系电池里,具体表现如下:

  (1)酸性电池:以铅酸电池为代表。经过超过150年的发展,金属铅仍然是目前唯一能用于酸性电池的负极材料。但是,金属铅除了有毒之外,还会在深度充放电的过程中发生“硫酸盐化”而形成电荷无法穿透的钝化层,导致循环寿命一般只在300多圈。这种深充放场合目前多见于电动自行车,这种需要一年一换的电池显然难以放大应用。

  (2)碱性电池:涵盖了镍铁、镍镉、镍氢和镍锌等电池。在碱性可充电池100多年的演变中,正极材料始终固定为性能优越的氢氧化镍,而负极材料经过了铁、镉、储氢合金和锌等多代更迭后,仍无一不面临循环过程中的结构破坏,同时还受到化学腐蚀、成本高、材料资源有限等限制。

  (3)中性电池:主要包括金属离子电池,尤其是水系锂离子和钠离子电池。这类新兴电池技术目前仍处于基础研究阶段,负极材料仍有待克服对氧气存在和电解液酸碱度波动的不稳定性问题。

  美国休斯顿大学的姚彦教授课题组在过去几年一直从事安全和低成本的新型能源存储材料研究。最近,他们和美国西北大学以及加州大学圣地亚哥分校合作针对水系电池负极面临的上述种种问题,提出了以有机醌类化合物作为适用于各种类水系电池的通用负极材料。相关成果发表在Nature Materials 上,第一作者是姚彦课题组的梁衍亮博士。

有机醌类化合物作为适用于各种类水系电池的通用负极材料。图片来源:Nature Mater.

  醌类是具有1,2-苯醌或1,4-苯醌结构的有机化合物,在充放电过程中能发生化学和结构上高度可逆的离子配位反应(图1左)。由于醌类的电位可调节、化学稳定性好、反应速率快、对离子选择广泛,它们能在任意酸碱度、多种载流离子、大温度范围、各种气氛下稳定工作,并与任何成熟的正极材料搭配,组成稳定的醌基水系电池(图1)。与使用现有负极的水系电池相比,醌基电池的能量和功率指标都毫不逊色,甚至在成本、低温性能、过充性能等方面更胜一筹,堪称水系电池发展的一大突破。

图1. 基于醌类负极材料的三种水系电池示意图和相应的反应机理

  作者首先研究了酸性电池中醌类负极的应用。大范围的筛选实验表明,很多醌类能在酸性电解液(34 wt%硫酸)中工作,反应电位普遍没有铅(Pb)低,但比容量却高出许多(图2a)。其中1,2-苯醌衍生物PTO(标记为红色)虽然电位比铅高0.85 V,但凭借三倍于铅的容量而取得与铅酸电池一致的比能量和能量密度(图2b和表1)。PTO能在深度充放电(~100%)下,循环超过1500圈/1200小时而无明显容量衰减(图2c),该稳定性远远超过任何铅酸电池。究其原因,主要是PTO及其充电产物的质子传导能力远高于铅的放电产物硫酸铅,因而不存在产生硫酸盐化的问题。同样的原因使得PTO具有极佳的快速充放电性能,三分钟内能充电84%(图2d)。

图2. 基于醌类负极材料的酸性电池

  在对中性电池研究中,作者采用PTO的聚合形式PPTO作为负极。PPTO的工作电位比目前水系锂离子电池的标杆负极材料磷酸钛锂(LiTi2(PO4)3)高出0.46 V,但比容量却高出一倍(图3a)。所以,两者与正极材料为锰酸锂搭配所得到的电池比能量不相上下。PPTO在深度循环3000圈/3500小时后容量保持80%(图3b),足以与最稳定的水系锂电池负极比肩。PPTO与现有负极材料相比的最大区别,在于它能承受苛刻的“氧循环”(图3c)。这得益于其对氧(图3d)和碱的稳定性。氧循环是一种能防止水系电池过充和使高压正极能够被使用的自发机制,这对提高酸性和碱性电池比能量和安全性起了不可或缺的作用。在此工作发表前,氧循环还未曾在水系锂离子电池中实现过。

图3. 基于醌类负极材料的中性金属离子电池

  在碱性电池的研究中,作者使用了工作电位更低的1,4-苯醌聚合物PAQS。与商品碱性电池负极材料中循环寿命最长的储氢合金(MmH)相比,PAQS的容量和工作电位都稍有不及(图4a),但循环稳定性方面仍有优势(图4b)。值得注意的是,典型的镍氢电池由于储氢合金的制约,在零下25摄氏度下,能量会锐减至室温下的大约一半,功率也会大幅下降。这一直是镍氢电池最大的技术难题之一。PAQS的电极行为对温度的敏感性远小于储氢合金(图4c),使得PAQS电池在室温和零下25摄氏度下的能量和功率差别相当小(图4d),可成功克服镍氢电池这方面的困惑。

图4. 基于醌类负极材料的碱性电池

  醌类与现有水系电池负极的性能参数比较,如表1和图5。对于酸性电池(图5a),醌类在成本上紧追以廉价闻名的铅,更因其在循环寿命和快速充电性能上的大幅提升,而有将使酸性电池的应用领域扩展到大规模的储能行业。对于中性电池(图5b),醌类因为同时对氧气和碱稳定而使制作高能且安全的水系锂/钠/镁离子电池成为可能,向该类电池的实用化迈出了一大步。醌类对碱性电池的稳定性和低温性能等方面的提升同样值得称道,但目前在能量密度上仅达到酸性电池的水平,与商品碱性电池存在差距;事实上,用于碱性电池的各种负极材料均存在各自的短板。总而言之,醌类负极材料的共同特点是:性能稳定、价格廉价、原料资源近乎无限,而借助更优化的分子结构设计和正极材料搭配,电池比能量还有望取得超过成倍的提高。

表1. 醌类和其他水系负极材料的电化学参数和电池性能指标对比

图5. 醌类电池与现有水系电池的性能参数比较


相关文章

新型锂电池采用有机材料替代稀有金属

美国麻省理工学院研究人员设计了一种电池材料,以一种更可持续的方式为电动汽车提供动力。新的锂离子电池阴极基于有机材料,而不是基于钴或镍。相关研究论文1月18日发表在美国化学会《ACS中央科学》杂志上。大......

高性能锂离子电池负极材料研究获进展

近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文和韩方明团队,在高性能锂离子电池负极材料研究中取得了新进展。此前,该团队创制了纵-横互连三维碳管网格膜,并以该网格膜作为对称型双电层电化学电......

既抗冻又耐热,这款锂电池超“能打”

宽温域电芯产品。深圳先进院供图蒋春磊在介绍宽温域电芯产品。深圳先进院供图凛冬时节,你的电动汽车和移动电子设备能抵御极寒天气吗?近日,在第25届中国国际高新技术成果交易会上,一款最新研发的锂离子电池正在......

一文详解“锂离子电池负极材料”

人们研究过的锂离子电池负极材料种类繁多,主要有石墨、硬炭、软炭等碳材料,钛酸锂、硅基、锡基等非碳材料。负极材料要求为了保证良好的电化学性能,对负极材料要求如下:①锂离子嵌入和脱出时电压较低,使电池具有......

78月全国锂电池总产量超过180GWh,同比增长23%

据工信部网站消息,2023年7-8月,我国锂离子电池(下称“锂电池”)产业延续增长态势。根据锂电池行业规范公告企业信息和行业协会测算,7-8月全国锂电池总产量超过180GWh,同比增长23%。锂电池环......

我国学者成功研制1503Whkg1能量密度的新型水系电池

基于水系电解液的储能电池具有安全性高、成本低和倍率性能优等特点,近几年发展迅速。然而,水系电解液的电化学窗口较窄(1.23V),导致该类型电池的工作电压一般比较低;且水系电池对电极材料的选择较为严苛,......

上海硅酸盐所团队构造高能量密度新型水系电池

基于水系电解液的储能电池具有安全性高、成本低和倍率性能优等特点,近几年发展迅速。然而,水系电解液的电化学窗口较窄(1.23V),导致该类型电池的工作电压一般比较低;且水系电池对电极材料的选择较为严苛,......

多孔碳负极材料可有效储钾

从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化学学会RSC出版......

研究人员开发出多孔碳负极材料储钾

记者11月27日从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化......

高功率长寿命水系钾离子全电池问世

清洁能源是当今热点,水系钾离子电池更是有着很大的优势。  近日,中国科学院物理研究所/北京凝聚态物理国家研究中心清洁能源重点实验室博士生蒋礼威在研究员胡勇胜和副研究员陆雅翔的指导下......