发布时间:2020-07-27 11:16 原文链接: RNAi干扰技术及应用进展研究(四)

3.5 转基因研究


在动植物的转基因试验中, 经常发生基因沉默。因此, 对转基因沉默机制的探索可以为在转基因研究中避免基因沉默提供对策。在转基因植物研究中避免基因沉默可提高试验成功率,且节省时间,而在大型动物转基因研究中避免基因沉默可节约成本,提高产率。

 

3.6 干细胞研究


在干细胞研究方面,在dsRNA阻断大鼠骨髓源性神经干细胞 Hes5表达的试验中,观察外源性短dsRNA在转录后水平mRNA水平降低基因表达的效率,并对其影响因素进行了初步探讨。同时基于干细胞可能拥有自己的一套基因组,不同类型的干细胞又拥有各自所特有的基因,这些基因可能是决定干细胞特性的最关键的实质性因素。因此,RNAi技术在此领域应用空间广阔。

3.7 研究信号传导的新途径


Biotech 认为,联合利用传统的缺失突变技术和RNAi技术可以很容易地确定复杂的信号传导途径中不同基因的上下游关系,Clemensy等应用RNAi研究了果蝇 细胞系中胰岛素信息传导途径,取得了与已知胰岛素信息传导通路完全一致的结果。RNAi技术较传统的转染试验简单、快速、重复性好,克服了转染试验中重组 蛋白特异性聚集和转染率不高的缺点,因此认为RNAi技术可能成为研究细胞信号传导通路的新途径。

3.8 常见病的治疗


Nature 杂志报道了miRNA(Micro RNA)的应用上一个重要发现,成功采用miRNA调节了胰岛素的分泌,这为糖尿病的治疗带来新的希望,也将为糖尿病 的新药研究带来新的曙光和思路。据Sicence杂志报道,显示应用RNAi技术可有效降低血管内胆固醇含量,对治疗心血管疾病有明显的作用。

展望

综 上所述,RNAi技术在基因功能研究、抗肿瘤治疗、抗病毒治疗、基因应用研究、常见病的治疗等许多方面都是强有力的工具和手段。同时做为新兴的生物技术, 还有广阔的研究和应用空间期待着科研人员的探索。例如,siRNA在病毒持续性感染过程中扮演怎样的角色?siRNA在冬眠动物体内的作用如何?RNAi 在雀斑形成中起到怎样的作用?如上述问题得到解决,将进一步依据其机理及特点,有望应用于病毒持续性感染的鉴别诊断及治疗,利用siRNA在冬眠动物体内 的作用进行星际航行,以解决能量供应及时间跃迁问题,RNAi应用于祛除雀斑等。

尽管在RNAi方面的研究已取得许多突破性进展,尤其是哺乳动物细胞中的研究的报道逐渐增多,但由于RNAi机制尚未完全阐明,仍有许多问题尚未得到彻底解答。例如,siRNA 在哺乳动物细胞中抑制 mRNA表达是有效的, 但达不到果蝇细胞那样的高抑制率, 可能是因为生物进化水平越高,调控基因表达系统的复杂程度相应的越高,多种抑制机制间相互作 用的频率也越高,抑制作用受到的影响因素也就越多。另外, 在哺乳动物中,RNAi能否成功地抑制基因表达以及抑制的程度还取决于细胞类型。对线虫来说, 可以采用注射、浸泡或喂食的方法转入dsRNA,而对哺乳动物来说,寻找高效的方式来转入siRNA以及快速的方式来筛选siRNA仍在进一步探索中。RNAi在抗病毒感染中的应用令人鼓舞, 但要取得最终的成功还有很漫长的路要走。其中一个关键的原因是siRNA并不能对所有病毒RNA发生作用,有些 病毒靶序列可能隐藏在二级结构下, 或者位于高度折叠的区域中, 而有些病毒序列可能与蛋白质形成紧密的复合物, 阻碍了与siRNA 的识别。因此,不仅要选合适的靶序列,而且需要反复试验。另一个重要的原因是病毒子代的突变率较高, 这使病毒可逃避siRNA 的识别。为了克服这个障碍,所选病毒 RNA的靶序列必须是高度保守的, 或者设计数对siRNA同时作用。

总之,RNAi作为一种新发展起来的分子生物学技术,不可避免地会存在潜在的问题,这就要求研究者在利用该技术时要考虑到生物安全性等诸多问题,以使RNAi技术更好地为人类服务。