哺乳动物胚胎经常异常发育,从而导致流产和遗传性疾病,如唐氏综合症。胚胎发育异常的主要原因是卵子减数分裂过程中的染色体分离错误。与体细胞和雄性生殖细胞不同的是,卵子通过一种缺乏中心体的特化微管纺锤体分离染色体。典型的中心体由一对被中心粒周围材料包围的中心粒组成,并且是中心体纺锤体(centrosomal spindle)的主要微管组织中心。人们对哺乳动物卵子中的非中心体纺锤体(acentrosomal spindle)是如何组装的知之甚少。

  尽管缺乏中心体,但哺乳动物卵子表达许多中心体蛋白。在一项新的研究中,德国研究人员着重系统性地探究了这些中心体蛋白如何定位到非中心体纺锤体,以便组装哺乳动物卵子中的微管。相关研究结果近期发表在Science期刊上,论文标题为“A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes”。

图片来自Science, 2019, doi:10.1126/science.aat9557。

  这些研究人员通过在活的和固定的小鼠卵子中联合使用高分辨率显微镜分析了70种中心体和纺锤体相关蛋白的定位。出乎意料的是,这些蛋白中的19种定位于一种纺锤体结构域(spindle domain),这种结构域渗透到纺锤体的大片区域并形成突出的球形突起。这些突起是动态的,彼此融合在一起,并且向外延伸远远超出纺锤体极。这种结构域包括中心体蛋白(AKAP450,CEP170和KIZ),中心粒卫星蛋白(CEP72,PCM1和LRRC36),负端结合蛋白(CAMSAP3和KANSL3),动力蛋白相关蛋白(HOOK3,NDE1,NDEL1和SPDL1)和控制微管成核和稳定性的蛋白(CHC17,chTOG,GTSE1,HAUS6,MCAK,MYO10和TACC3)。位于这种结构域内的蛋白是动态的,能够在整个纺锤体区域中快速地重新分布。通过开展体外和体内测定,他们发现这种结构域通过相分离形成并且表现类似于液体。因此,他们将它称为液体状减数分裂纺锤体结构域(liquid-like meiotic spindle domain, LISD)。LISD也存在于牛、羊和猪卵子的纺锤体中,因而是广泛保守的。许多LISD蛋白已在有丝分裂中得到广泛研究,但是在体细胞中还没有报道类似的结构,这表明LISD可能是卵母细胞中的非中心体纺锤体所独有的。

  LISD的组装由具有调节作用的激酶极光A(kinase aurora A)控制并且依赖于激酶极光A的底物TACC3以及网格蛋白重链CHC17,CHC17与TACC3一起结合到微管上。通过不同方式破坏LISD将这种结构域内的微管调节因子释放到细胞质中并导致严重的纺锤体缺陷。纺锤体变得更小且更不稳定,需要较长时间才能分离染色体。微管生长速率显著下降,它们的总周转率显著增加。与染色体着丝点(着丝粒丝)结合的微管以及在纺锤体中央区(极间微管)中以反平行方式重叠的微管都出现严重的缺失。总之,这些数据证实LISD是微管高效组装和形成稳定的非中心体纺锤体所必需的。

  综上所述,这些数据揭示了哺乳动物卵子中的一种以前未知的非中心体纺锤体组装原理:减数分裂纺锤体组装由一种突出的液体状结构域促进,这种结构域含有多种微管调节因子,并且以一种动态的方式将它们隔离在纺锤体微管附近。

  在诸如卵子之类的较大细胞中,在纺锤体附近局部富集微管调节因子可能特别重要,如果没有发生这种富集,它们将分散在整个细胞质中。液-液相分离(liquid-liquid phase separation)可能是这种富集的理想原理:它隔离微管附近的因子,但仍允许它们在整个纺锤体中动态扩散。这可能有助于促进纺锤体组装因子在整个纺锤体中的均匀分布,并测定它们的局部浓度,从而促进有效的纺锤体组装在较大的卵子细胞质中发生。

相关文章

南航团队Science发文,介电储能领域重要突破

2025年4月11日,南京航空航天大学物理学院杨浩教授团队和李伟伟教授团队,联合清华大学南策文院士,在介电储能领域取得重要突破,成功研发出储能密度高达215.8J/cm3的自组装树枝状纳米复合薄膜电容......

钙钛矿+石墨烯中国团队新成果登上《科学》

北京时间3月7日,华东理工大学材料学院清洁能源材料与器件团队侯宇教授、杨双教授等在《Science》(《科学》)发表石墨烯-聚合物机械增强钙钛矿材料的新方法。这一方法用来解决“钙钛矿太阳能电池稳定性差......

《Science》公布2024年十大科学突破!

作为全球科研权威期刊的《Science》每年都会在全球科学家们的最新科学进展中评选出“年度突破”榜单,用以褒奖引领科学界发展的卓越成就。近日,《Science》公布了2024年的十大突破,囊括了从艾滋......

国科大团队成果入选Science年度十大科学突破!

近日,Science公布2024年度十大科学突破评选结果其中,中国科学家发现迄今最古老的多细胞真核生物化石入选榜单生命的演化,从原核生物到真核生物,从单细胞真核生物到多细胞真核生物,逐步从简单生命演化......

打破校史!该省会学院首次以第一单位发表Science

11月22日,长沙学院电子信息与电气工程学院杨波教授团队在国际顶级学术期刊《Science》上发表题为《Smallwetlands:Criticaltofloodmanagement》的Letters......

Science|研究人员解开了儿童神经系统症状的医学谜团

大多数人在感到不适时去看医生是为了寻求诊断和治疗方案。但对于大约3000万患有罕见疾病的美国人来说,他们的症状与众所周知的疾病模式不符,这让他们的家庭进行了长达数年甚至一生的诊断旅程。但一个由圣路易斯......

受《东方快车谋杀案》启发,他一作兼通讯发论文

文|《中国科学报》记者徐可莹李思辉39岁的孙亚东不久前收获了人生第4篇Science论文。第一作者兼通讯作者的标注,让他的贡献跃然纸上。进入不惑之年前,他扎实地立住了自己的科研人设。这也是他本人最喜欢......

人类独特生殖机制揭示

科技日报讯(冯妍记者王春)记者9月22日从复旦大学生物医学研究院获悉,该院教授王磊、研究员桑庆、副研究员武田宇,与上海交通大学附属国际和平妇幼保健院教授李文组成联合团队,揭示了人类独特的生殖机制——人......

3000→3!国科大师生与月球“双向奔赴”

不久前,中国科学院大学(以下简称“国科大”)博士生导师、中国科学院地质与地球物理研究所(以下简称“地质地球所”)研究员李秋立团队,从嫦娥五号带回月壤样本中找到3颗火山玻璃珠,证明月球上的火山活动可以追......

8年“种”出一篇Science,他们期待更多科学家用上这套体系

文|《中国科学报》见习记者江庆龄2016年,黄学辉加入上海师范大学生命科学学院,从头开始组建植物数量遗传学团队。当时,黄学辉脑中已经有了一张“图纸”,他要解决一个基础的遗传学问题——水稻的不同性状受到......