发布时间:2019-06-17 15:04 原文链接: Nature:真核生物细胞核中染色质分离新机制

  在细胞核中基因组的活性部分与它的非活性部分在空间上分隔开来对于基因表达控制至关重要。在一项新的研究中,来自德国慕尼黑大学、美国麻省理工学院和马萨诸塞大学医学院的研究人员揭示了这种分离的主要机制,并颠覆了我们对细胞核的认识。相关研究结果近期发表在Nature期刊上,论文标题为“Heterochromatin drives compartmentalization of inverted and conventional nuclei”。

图片来自CC0 Public Domain

  真核染色体由染色质构成,染色质是DNA和相关蛋白的复合物。根据转录活性和压缩程度,可以区分两种类型的染色质,而且这两种类型的染色质在细胞核内在空间上分开。高度浓缩的染色质部分由含有很少基因的且处于转录失活状态的染色质区域组成。它被称为异染色质(heterochromatin),位于细胞核的外围,靠近核膜。另一方面,常染色质(euchromatin)富含基因并且对应于基因组的活性部分。它占据细胞核的内部区域,不那么紧密压缩,因此基因表达所需的蛋白机器更容易接近。这种基因组组装的一般模式几乎存在于所有类型的真核细胞中,但是建立这种特征性分布的机制仍然知之甚少。

  在这项新的研究中,慕尼黑大学生物中心的Irina Solovei团队与马萨诸塞大学医学院的Job Dekker和麻省理工学院医学工程与科学研究所的Leonid Mirny团队开展合作,揭示染色质分离的驱动力是没有活性的异染色质,而且在“默认”染色质分布中,常染色质和异染色质是相反的。

  科学家们已提出了许多机制来解释染色质如何在细胞核内分离,但是它们中没有一个是确定性的,这主要是因为很难分析这两种染色质类型在异染色质结合到核膜上的常规细胞核中的相互作用。Solovei说,“因此,对于我们的这项研究而言,我们选择了所谓的倒置细胞核(inverted cell nuclei)”。她和她的同事们大约10年前在夜间活动的哺乳动物的视网膜中发现了这些细胞核,在那里它们局限于称为视杆细胞的感光细胞类型。在视杆细胞中,紧密压缩的异染色质包装在细胞核内部,而活性的常染色质直接位于核膜下---这是一般规则的一个独特例外。结果表明,在视杆细胞中,细胞核的异染色质核心起着微透镜的作用,会聚光,从而改善夜行动物视网膜的光学特性。来自Solovei团队的后续研究揭示这些非典型的细胞核缺乏两种在正常情形下将异染色质连接到核膜内表面的蛋白复合物,因而发现这种倒置机制。

  通过利用将现代显微镜和分子生物学技术相结合一起获得的数据,这些研究人员如今获得了单个染色体和整个细胞核的聚合物模型。通过模拟这些聚合物在不同条件下的行为,他们能够研究这两种染色质组分和核纤层内部及其之间的相互作用。这些研究表明异染色区域之间的相互作用足以导致染色质分离,而常染色质中的相互作用对于这一过程并不是必要的。Mirny说道,“我们的研究结果表明这种倒置的细胞核在概念上代表了默认的细胞核结构。” Solovei说,“不过异染色质与核纤层的相互作用对于形成常规的结构至关重要。在这方面,有趣的问题是:为何大多数真核生物都具有常规的细胞核?异染色质在细胞核外围定位的功能相关性可能是什么?”

  参考资料:

  Martin Falk et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, doi:10.1038/s41586-019-1275-3.

相关文章

七院院士,最新Nature:高性能柔性纤维问世,可穿戴电子新突破!

新加坡南洋理工大学的魏磊教授、七院院士高华建教授,以及中科院苏州纳米所的张其冲和中科院深圳先进技术研究院的陈明,共同发表了一篇关于高性能半导体纤维的最新研究成果。这篇题为“High-qualityse......

燕山地区发现迄今最早的多细胞真核生物化石

1月24日,中国科学院南京地质古生物研究所研究员朱茂炎带领的地球-生命系统早期演化团队,在《科学进展》(ScienceAdvances)上,报道了在华北燕山地区16.3亿年前地层发现的多细胞真核生物化......

16.3亿年,我国发现全球最早的多细胞真核生物化石

中国科学院南京地质古生物研究所朱茂炎研究员带领的“地球-生命系统早期演化”科研团队在华北燕山地区16.3亿年前地层中发现多细胞真核生物化石。这些保存精美细胞结构的微体化石被认为是迄今全球发现最早的多细......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......

北京大学合作最新Nature

钙钛矿太阳能电池(PSCs)由一个固体钙钛矿吸收体夹在几层不同的电荷选择材料之间,确保设备的单向电流流动和高压输出在p型/intrinsic/n型(p-i-n)PSCs(也称为倒置PSCs)中,电子选......

零下273.056摄氏度我国科学家Nature发文实现无液氦极低温制冷

大约一个世纪前,人类首次将氦气液化,开启了利用液氦进行极低温制冷的新纪元。随后,极低温制冷技术被广泛应用于大科学装置、深空探测、材料科学、量子计算等国家安全和战略高技术领域。然而,用于极低温制冷的氦元......

回顾:2023年Nature\Science上的锂电池成果

2023年Nature上的电池文章汇总1.固态电解质最新成果登上Science日本东京工业大学创新研究所全固态电池研究中心RyojiKanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成......

改善催化剂稳定性成果登上NatureCatalysis

Fe-N-C催化剂是一种具有非铂族金属(PGM-free)的氧还原催化剂,可替代在酸性环境中Pt用于氢质子交换膜燃料电池(PEMFCs)的阴极氧还原反应(ORR)。然而,在过去的几十年里,由于对活性位......

Nature发布2024年值得关注的科学事件,涉及环境、生命科学、AI、天文学

12月18日,《Nature》发布了2024年值得关注的科学事件。   人工智能的进步ChatGPT的兴起对今年的科学产生了深远的影响。它的创建者,位于加利福尼亚州旧金山......

破纪录|Nature:今年撤稿数量超1万篇,超八成来自这家出版社

12月12日,Nature发布一篇新闻报道:今年被撤回的文章数量急剧上升,截至2023年底撤稿数量已超过1万篇,打破年度撤稿记录。专家表示,这只是冰山一角。由于各出版商正着力于清除大量存在的虚假和同行......