发布时间:2018-12-12 17:15 原文链接: Nature子刊发现谷氨酸受体神经细胞内转运的新调控机制

  人的大脑是由约100亿个神经元(即神经细胞)组成,这些神经元通过突触这种特化细胞间连接结构进行信息交换。突触前神经元通过突触前膜释放神经递质,结合于突触后膜的神经递质受体,引起突触后神经元的电生理变化,从而实现神经信号的跨细胞传递。在大脑内,兴奋性的信号传递主要是由突触前膜释放的谷氨酸(神经递质)结合于突触后膜的谷氨酸受体来实现的。因此,谷氨酸受体在神经细胞内合成,转运并恰当地定位到突触后膜对于大脑正常行驶功能具有重要的意义。

  南京大学模式动物研究所、南京大学生物医药国家重点实验室和鼓楼医院联合中心、南京大学脑研究院的研究人员发表了题为“Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain”的文章,揭示信号肽对于大脑神经细胞之间信号传递功能的调控作用。

  这一研究成果公布在Nature Communications杂志上,文章的通讯作者为南京大学的石云教授和中国科学院昆明动物研究所的盛能印研究员,第一作者为段桂芳。

  在这篇文章中,研究人员利用CA1椎体神经元来研究Kainate-型谷氨酸受体(KAR)的突触功能,发现在CA1神经元表达GluK2受体能够进入突触后膜,极大地(>10倍)增强突触后电流(EPSCs),而表达GluK1受体却不能进入突触后膜,不影响EPSCs(Sheng et al., 2015; Sheng et al., 2017)。

  为了解析KAR受体的突触定位机制,石云课题组依据GluK1和GluK2蛋白结构的相似性,构建和检测了一系列的嵌合型突变受体。他们意外发现GluK1的前导信号肽发挥着关键性调节作用。当GluK1的信号肽替换为GluK2信号肽时,GluK1受体成功定位到突触上,并且该GluK1(SPGluK2)受体能够10倍地增强突触后电流,其幅度与GluK2类似 (Fig.1 A)。

  课题组人员推测,这个现象存在两种可能的机理,第一、GluK2的“超级”信号肽赋予了GluK1额外的突触转运能力。第二、GluK1信号肽抑制了其本身具有的突触后膜转运能力。为了区分这两种可能性,课题组人员设计了两个实验。

  第一个实验是将GluK1的信号肽换成GluA1的“弱”信号肽,因为过去的研究表明在CA1神经元表达GluA1时,并不能增强突触活性,结果在这个“弱”信号肽带领下,GluK1(SPGluA1)同样可以增强突触电流 (Fig. 1B, E)。第二个实验更直接,将GluK1的信号肽和GluK1(SPGluK2)共同表达在同一个神经元中,结果GluK1(SPGluK2)的突触增强效应被完全抑制 (Fig. 1C,D,F),说明GluK1的信号肽对于GluK1的突触定位具有反式抑制作用。进一步的解析发现GluK1的信号肽和氨基端结构域(ATD)共同发挥抑制作用,缺一不可。生物化学实验进一步证明GluK1的信号肽可以和GluK1的ATD相互结合。

  同时,课题组研究人员也发现,信号肽不仅抑制GluK1的突触定位,也抑制了上膜转运。所有这些研究结果表明,GluK1受体的信号肽能够作为一个非常规配体,结合于其ATD结构域,行驶调节GluK1受体胞内转运和突触定位的功能。

  传统的观点认为前导信号肽只是编码新合成蛋白的胞内定位信号,它将新合成的肽链导入内质网,从而最终进入分泌途径或者定位到细胞膜。一般来说,信号肽把肽链导入内质网就完成了其功能,在内质网膜上被信号肽酶切割下来,和后续的转运没有关系。

  这篇论文发现了GluK1的信号肽除了指导GluK1进入内质网的经典功能之外,还有调节后续转运的全新功能,这也是膜蛋白的信号肽研究方面的新发现。值得一提的是,这项研究是在石云教授参与的一系列研究工作的基础上做出的(Granger et al., 2013; Sheng et al., 2018; Sheng et al., 2015; Sheng et al., 2017)。石云教授的这个成果也和他的团队在2016年的发现(He et al., 2016)遥相呼应。在2016年的论文中,课题组研究人员发现AMPA型谷氨酸受体GluA1/A2的空间排列是由GluA1的信号肽决定的。因此,石云教授的研究表明谷氨酸受体的信号肽在受体的合成和转运中的作用远超其传统功能,而谷氨酸受体的合成和转运也远比预想的要复杂。这些工作揭开了谷氨酸受体胞内复杂合成、装配和转运机制的冰山一角。

相关文章

非卤溶剂加工高效有机太阳电池受体光伏材料研究获进展

有机太阳电池具有低成本以及可大面积印刷加工的优势,在未来商业化应用颇有潜力。目前,高性能有机太阳电池通常采用低沸点卤代试剂(如氯仿)来制备。这是由于此类光伏材料可在氯仿溶剂成膜过程中形成合适的相分离,......

Nature:科学家识别出冠状病毒进入人类细胞的特殊受体

引起COVID-19的SARS-CoV-2病毒会导致严重的急性呼吸道综合征,这或许就与2019年出现的已知会引起轻度季节性感冒的其它冠状病毒形成了对比,同时还提出了一个问题,即为何一种冠状病毒对人类所......

研究发现|孕激素或永久重塑女性大脑

成为母亲在生理和心理层面上都是一个变革性的事件。怀孕时,荷尔蒙充斥身体,引起生理和行为变化。英国弗朗西斯·克里克研究所对小鼠的研究表明,雌二醇和孕酮这两种妊娠荷尔蒙通过附着在大脑中的受体上,重塑了大脑......

人类与猴子看颜色的方式一样吗?

研究表明,某些负责色觉的神经细胞回路是人类独有的。色觉领域的研究发现了新的证据,表明与猴子相比,人类有能力检测更广泛的蓝色色调。据研究人员称,"在人类视网膜中发现的独特连接可能表明最近的进化......

中美科学家联手解析出整个阿片类受体家族的三维结构

在继续努力改进阿片类止痛药的过程中,来自中国科学院和美国北卡罗来纳大学的研究人员在一项新的研究中利用低温电镜技术解决了整个阿片类受体(opioidreceptor)家族与其天然的肽结合的详细结构。他们......

武大首次揭示蝙蝠MERS相关冠状病毒受体

2022年12月7日,国际学术期刊《自然》(Nature)以长文(Article)形式在线发表了武汉大学病毒学国家重点实验室/生命科学学院严欢研究组在病毒受体领域的研究成果,论文标题为《MERS冠状病......

科学家首次发现植物谷氨酸受体蛋白生理功能靶点

近日,中国农业科学院深圳农业基因组研究所与瑞士洛桑大学科研团队合作,揭示了谷氨酸受体蛋白GLR3.3的羧基端区域在损伤刺激产生的长距离信号传递过程中发挥重要作用。该研究成果发表于《新植物学家》(New......

我国科学家揭示神经激肽A激活神经激肽2受体的分子机制

神经激肽(neurokinin)是一类神经肽,在炎症、疼痛伤害感受、上皮细胞分泌和增殖等发挥重要作用,普遍分布在哺乳动物中枢和周围神经系统中。近日,来自中国科学院上海药物所的研究团队在《CellDis......

研究揭示棉铃虫感受植物苦味物质香豆素味觉受体

植物次生物质是植物体内经过复杂的分支代谢途径的产物,一般没有营养价值,但构成不同植物特有的味道,在植物防御中起关键作用。植食性昆虫对植物的喜好程度往往取决于次生物质的种类和含量。我国重要农业害虫棉铃虫......

上海药物所等揭示孤儿受体GPR119识别配体的分子机制

糖尿病、脂肪肝和肥胖症等代谢性疾病已成为影响人类健康的“杀手”之一。研究显示一些孤儿受体可能成为治疗这些疾病的重要靶点。GPR119又称葡萄糖依赖的促胰岛素受体(Glucose-dependentin......