发布时间:2023-03-29 14:57 原文链接: 大四时被“忽悠”进组,27岁小伙发首篇Nature论文

  5年前的夏天,中科院生物物理所园区回荡着悠长的蝉鸣。刘昊走进柳振峰研究员的办公室,当时他22岁,正在读大四,想要到柳老师的实验室里实习。

  柳振峰在电脑上打开一张PPT,这是植物光合作用的分子机制图。在植物细胞中,叶绿体像一个个迷你“生产车间”正在繁忙工作。然而这些“生产车间”自己内部培养的“工人”——蛋白质很少,90%以上的蛋白质要从外部引进。这些蛋白质要进入叶绿体发挥作用,这就需要经历一段复杂的运输过程。

  “你知道叶绿体膜上这个帮助蛋白质‘进门’的结构是什么吗?”柳振峰试探地问,这个知识点有些冷僻,他没指望刘昊能答上来。

  没想到,眼前这个年轻人回答得头头是道——这正是他感兴趣的研究方向!就这样,师生初次见面的短短几个小时里,刘昊就赢得了柳振峰课题组的入场券,并确定了未来5年的博士研究方向。

  近日,27岁的刘昊以第一作者身份在国际顶级学术期刊Nature上发表了相关论文,解析了叶绿体蛋白质传送器的组装原理。这时柳振峰才笑着承认,当初他有意“忽悠”了一下这个小伙子:“我没告诉他这个课题到底有多难。”

  被“忽悠”来的Nature一作

  光合作用就是植物通过叶绿体,把光能转化为化学能的过程。这可以说是地球上最重要的化学反应。没有光合作用,就没有我们眼前多姿多彩的生命世界。历史上,光合作用的机制研究曾多次斩获诺贝尔奖。

  “在光合作用中,植物如何做到高效地吸能、传能、转能,是科学研究的核心问题之一。”柳振峰对《中国科学报》解释。而叶绿体中有着复杂空间结构的叶绿素蛋白复合体,正是至关重要的能量“传送器”和“转换器”。

  叶绿体中的蛋白质,可以大致分为两种来源:不到10%的蛋白质是由叶绿体自身内部的基因编码的;90%以上的叶绿体蛋白质就像其他大多数蛋白质一样,是由细胞核中基因编码的。后者要进入叶绿体开展工作,需要连续穿越叶绿体特殊的内、外双层膜结构。为它们开辟道路的,是名为TOC-TIC的蛋白质转运复合体。位于叶绿体外膜上的转运体被称为TOC,位于内膜上的转运体则被称为TIC。

  在过去30年间,组成TOC和TIC的不同蛋白亚基已被陆续发现,而二者构成的TOC-TIC超复合体如何组装,如何跨越叶绿体内外膜,又如何组成前体蛋白的运输路径,这一系列的关键科学问题的答案都还未能研究清楚。

  “在真核生物体中,叶绿体和线粒体是具有双层膜结构的细胞器,像叶绿体TOC-TIC这样能够跨越双层膜的蛋白质转运复合体比较罕见,并且具有非常重要的生物学功能。它本身的组成和结构非常复杂,而且在细胞内的含量很低,因此研究难度还是很大的,可能做很久都做不出来。”柳振峰说。

  然而看着眼前这个“初生牛犊”般的科研苗子,柳振峰怕把他“吓跑了”,有意在表述上“打了个折”。

  “这个课题很有趣,不过可能要做4-5年,不一定有结果,你愿意来吗?”

  22岁的刘昊接受了挑战:“当时找到柳老师,就是出于对植物膜蛋白的兴趣,所以不管5年还是更久,只要能做出来就行。”

  科研攻关,从“洗菜”开始

  对冷冻电镜研究来说,样品的质量极为关键。“巧妇难为无米之炊”——很多时候,同样拥有冷冻电镜的研究单位,之所以有的能快速做出高质量的结果,有的迟迟难以突破,主要瓶颈和问题往往就出在样品的收集和制备环节上。

  在植物和藻类中,叶绿体TOC和TIC蛋白的天然丰度比较低。如何从叶绿体中获得又多又好的TOC-TIC超复合体拿来做实验,成了研究初期最大的难题。

  植物叶绿体的优质来源是菠菜。于是去菜市场拎5斤菠菜,再回实验室把一大盆菠菜清洗、分离、提纯,这一系列操作,成为刘昊做研究的常态。

  久而久之,这个小伙子成了洗菠菜的“熟练工”:要想洗得干净,就得用蒸馏水反复冲刷,每一片绿叶都清洗6遍;同时,还不能使用超声波等技术清洗,只能轻柔手洗,以保护TOC-TIC超复合体的完整形态。

  刘昊自嘲地说,洗菠菜已经成了他的“职业病”,即使回家洗菜、择菜,也保持着实验室的手法和速度。

  但藻类叶绿体样品的收集,就没这么容易了。

  柳振峰团队曾经向国际衣藻资源中心(Chlamydomonas Resource Center)订购实验所需的莱茵衣藻。然而,这株漂洋过海的藻种经过长途运输,经历了被喷酒精和消毒等重重波折后,到达生物物理所时,几乎“没剩几个活细胞”,险些被扔进垃圾箱。

  抱着“死马当活马医”的态度,刘昊还是把藻种放进安装了光源的恒温摇床中摇着。“我没事就去看看它,一直都长得很缓慢,但突然有一天,它变绿了。”

  另一株来之不易的藻种,则多亏了一位“好心的瑞士老先生”。他是瑞士日内瓦大学的Jean-David Rochaix教授。2018年召开的第二次世界生命科学大会上,Jean-David得知柳振峰课题组正在开展这方面的工作后,便主动提出共享自己实验室的带有特殊亲和标签的藻株。用这个藻株做实验,意味着将大大简化提取步骤,加快实验进程。

  但由于种种原因,在长达2年的时间里,他们一直没能拿到这个藻株。在Jean-David的不懈坚持和争取下,藻株终于先辗转寄到中科院植物研究所杨文强课题组,之后再转交给柳振峰课题组。

  获得足够的实验样品后,他们很快使用冷冻电镜技术,对TOC-TIC复合物中的孔道特征进行了细致观察和分析,并揭示了叶绿体蛋白质传送器的组装原理。经过半年多的反复审稿修改,这项研究终于在Nature见刊。

  在柳振峰看来,这次研究结果的发表离不开国际交流和合作。“与一流科学家开放地交流和合作,能促成很多出色的成果,这株跨越大洋的藻种也证明了这一点。”他说,“我们也毫不犹豫地把论文初稿发给Rochaix教授,并在征得他的同意后,把他的名字写在了论文的共同作者中。”

  这篇Nature只有4个署名

  这篇Nature论文只有4位署名作者:博士生刘昊、李安节分别为论文的第一和第二作者,负责整个技术路线和相关实验的实施;瑞士日内瓦大学Jean-David Rochaix教授为共同作者,参与该项课题技术路线的设计和结果分析讨论;柳振峰则为通讯作者,负责统筹研究的整体设计和协调研究过程。

  在Nature网站2021年6月发表的一篇文章中指出,对PubMed-MEDLINE数据库列出的3000万篇论文的一项分析发现,作者的平均人数从1975年之前的1.9人上升到2015-2019年间的5.9人。一篇顶刊论文,署名十几人甚至几十人的情况早已屡见不鲜。

  柳振峰表示,自己课题组产出的论文作者人数偏少,与科研的不同组织模式有关。他们的这种“小团队作战”,有限的参与者每个人都必须承担“大量的工作”。相应的,也往往有“高密度”的收获。

  对此,刘昊和李安节深有体会。

  在本科生阶段就确定研究方向的刘昊,在之后4年间几乎只做了这一个选题。大到设计实验、调整方向,小到跑菜市场买菠菜、连续十几个小时扎在实验台前提纯蛋白,他事无巨细地挑起了这个课题的大部分工作。

  “在我们课题组,柳老师对我们的要求是,每个人都要完整掌握实验的全套流程。”李安节说,“这样会很辛苦,但对我们的成长非常有益。”

  实验后期,李安节主要负责分子动力学模拟,但这一体系不同于传统结构解析,还需要有扎实的计算机科学、生物化学和生物物理学等学科背景。李安节花了两周时间,一头扎进新领域的文献海洋,“程序跑通的那一刻,真感觉挺厉害的!”

  在这个课题组,发论文的效率也许不是最高的,但人才培养的效率却并不低。

  不要只摘“低垂的果实”

  在柳振峰看来,从结构生物学的传统优势出发,阐明光合作用的微观机理,是一项“值得投入几代人”的研究。

  过去200余年间,国际上与光合作用相关的研究成果已经十余次问鼎诺贝尔奖,被诺贝尔奖评委会评价为地球上最重要的化学反应。其中,光合膜蛋白的三维结构研究一直是国际公认的高难课题,它也被认为是一个国家结构生物学研究水平的重要标志。主持完成了我国第一个膜蛋白的晶体结构测定的科学家,正是柳振峰的导师——中国科学院院士常文瑞。

  1998年,柳振峰来到生物物理所常文瑞课题组,选择了一个“看似不可能”的课题——菠菜捕光复合物的结晶和结构解析。在延期毕业近一年后,柳振峰终于在Nature上发表得到国际同行高度认可的论文。

  2018年,柳振峰在实验室第一次见到刘昊时,也抛出了一个“看似不可能”的课题。如今,时隔近20年的两篇Nature论文,串起了3代结构生物学者的科研人生。

  随着冷冻电镜和深度学习技术的快速发展,过去解析一个分子结构需要几年的时间,如今发展为仅需几个星期,甚至几天。那么,结构生物学研究背后的真正问题又是什么?

  刘昊记得,柳老师总挂在嘴边的一句话是,不要只摘“低垂的果实”。因此,柳振峰招收学生时,从不关注对方发过几篇论文,只关注对方“愿不愿动脑筋、会不会提问题”;在他的课题组,从没有论文发表的数量要求,只关注一项研究是否把科学知识的边界往前推动了一大步。

  对刘昊来说,结构生物学研究最令他激动的一刻,不是得知文章被Nature接收的一刻,而是解出TOC-TIC超复合体电镜密度的一刻:“我也能解出这么难的问题?”与探索未知的收获相比,在顶刊发表论文就显得“平淡多了”。

  正如柳振峰所说:“解析结构并不是我们的目的,更重要的是发现结构背后的规律性原理。结构生物学的真正核心在于提供开创性的框架,为后来研究者带来新的启发、新的起点。”

相关文章

关于印发《地下水环境背景值统计表征技术指南(试行)》的通知

原文地址:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202310/t20231027_1044123.html名称关于印发《地下水环境背景值统计表征技术指南......

深圳先进院举行“博士课堂”嘉年华

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511309.shtm10月28日上午,中国科学院第六届科学节深圳先进院“博士课堂”嘉年华活动在中国科学......

报告显示全球主要矿产品价格冲高后回落

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511308.shtm近日,在第二十五届中国国际矿业大会“一带一路”地学合作与矿业投资论坛上,自然资源部......

褚威:情系航天,让梦想在东风着陆场腾飞启航

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511307.shtm褚威是酒泉卫星发射中心工程师,大学毕业后就从事航天搜救工作。入职以来他先后担任过多......

天为幕地为席,宁波材料所科学家谈材说料

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511305.shtm10月28日晚,秋风习习,华灯初上,五彩斑斓的灯光将中国科学院宁波材料技术与工程研......

抑郁障碍物理治疗前沿学术研讨会在京举办

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511304.shtm10月28日,由北京大学第六医院主办的抑郁障碍物理治疗前沿学术研讨会在京召开。此次......

最新研究揭示公鸡镜中自我认知能力

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511303.shtm......

世界最大海上风电场首次向英国电网输送电力

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511301.shtm......

小鼠胚胎首次在太空中生长

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511300.shtm近日,日本山梨大学的研究人员首次在国际空间站(ISS)上成功培养了小鼠胚胎,以探索......

中国科学院西安光机所获得时间分辨率优于10皮秒的激光内爆图像

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/511289.shtm近日,由中国科学院超快诊断技术重点实验室分幅成像团队缑永胜副研究员负责的时间放大分......