发布时间:2022-01-14 17:06 原文链接: 分子植物卓越中心揭示水稻耐热调控新途径

  全球气候变暖成为威胁世界粮食安全的一大重要问题,据报道,年平均温度每升高1℃,将会对水稻、小麦、玉米等粮食作物带来3%~8%左右的减产。植物在与高温的长期对抗中,进化出了不同的应对机制:一方面,植物可以通过“积极应对”来提高自身对于未折叠蛋白的清除能力,从而维持蛋白内稳态平衡以获得高温抗性(如TT1)(Li et al., 2015);另一方面,植物也可以通过“以静制动”的方式,使自身钝感,减少热响应消耗,维持正常的生理活动,并且在热胁迫结束后快速重建以提高热胁迫下的生存能力。通过遗传学手段,挖掘耐高温的自然位点并对其调控机制进行深入研究,对于作物耐高温遗传改良具有重要意义。

  G蛋白一直是植物生长发育和胁迫响应中的研究热点,但是其在热胁迫耐受的分子机制方面还未有深入研究;钙信号作为第二信使,在逆境信号的传导过程中发挥着重要作用,但是钙信号如何在热信号通路的下游被解码,并转导为生理生化响应,目前还没有合理的解释。自然位点因其在生产应用上的重要意义受到广泛关注,但是其定位难度较大,尤其是定位与耐热等复杂性状相关的位点挑战更大。继在2015年定位克隆了水稻首例抗热的QTL位点TT1,近日,中国科学院分子植物科学卓越创新中心研究员林鸿宣团队又分离克隆了水稻抗热QTL TT2,相关研究成果以TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis为题在Nature Plants上发表。该成果揭示了联合G蛋白、钙信号、蜡质代谢等分子层面的水稻耐热调控新途径。

  该研究团队通过正向遗传学方法从水稻耐热遗传资源中定位克隆到了TT2,其编码一个G蛋白γ亚基,并且负向调控水稻的耐热性;热带粳稻来源的TT2存在一个SNP,使其编码一个提前终止形式的蛋白,获得较强的耐热性,而在高温敏感的温带粳稻中,该SNP的占比较低。在热胁迫下,相较于对照,携带耐热性位点的近等基因系NIL-TT2HPS32苗期成活率显著提高,并且成熟期的单株产量也显著提高,增幅达54.7%,表明该基因位点在农业生产上有重要的应用价值。进一步的研究发现,TT2的功能有无,影响到热胁迫后的蜡质代谢通路,在高温敏感的对照株系中,蜡质相关调控基因呈现出明显的受热诱导而下调的趋势,而在抗热的NIL-TT2HPS32株系中,有一部分蜡质基因则呈现出不响应热且稳定表达的趋势,其中包括一个正向调控蜡质合成的重要转录因子OsWR2。在抗热的NIL-TT2HPS32株系中敲除OsWR2,发现其耐高温的表型消失,证明在高温胁迫下维持正常的蜡质含量对于水稻耐热是至关重要的。为了进一步建立TT2与OsWR2表达水平的调控关系,研究人员通过对OsWR2上游启动子的分析,发现了一类钙调素结合转录因子(CAMTA)的结合元件CG1-like motif,并通过同源比对,找到了两个水稻的CAMTA家族成员,并命名为SCT1和SCT2;进一步实验证明SCT1可以直接结合OsWR2的启动子,影响OsWR2的表达,并且负向调控水稻的耐热性。SCT1带有钙依赖的钙调素(CaM)结合位点,可以通过与CaM的互作来解码胞内的钙信号。G蛋白之前被多次报道参与动植物的钙信号调控(如RGA1)(Ma et al., 2015),该研究也证实了TT2的功能缺失会导致热诱导的钙信号减弱。当正常功能的TT2存在时,高温会诱导钙信号的产生并使得胞内钙浓度提高,高浓度的钙离子会被CaM感知,并促进CaM与SCT1的互作,从而加强CaM对于SCT1转录活性的抑制,最终导致OsWR2在高温条件下表达量迅速下调,蜡质减少并最终无法抵御高温,呈现出热敏感的表型。当TT2功能缺失时,热诱导的钙信号减弱,进而减弱了SCT1与CaM的互作,降低了CaM对于SCT1转录活性的抑制,最终维持了OsWR2在高温胁迫下的正常表达和稳定的蜡质含量,呈现出抗热表型。

  综上所述,该研究首次系统地将G蛋白调控、钙信号传导及解码、蜡质代谢通路联系起来,阐明了一条从上游信号产生到下游生理生化响应的调控通路,该通路独立于以往已知的通过热激蛋白、活性氧清除以及未折叠蛋白清除参与的植物耐热调控途径,是植物抗热领域的重要进展。TT2是一份作物耐热育种的珍贵基因资源,对未来作物借助分子设计手段实现定点耐热遗传改良具有重要意义。

相关文章

分子植物卓越中心揭示水稻耐热调控新途径

全球气候变暖成为威胁世界粮食安全的一大重要问题,据报道,年平均温度每升高1℃,将会对水稻、小麦、玉米等粮食作物带来3%~8%左右的减产。植物在与高温的长期对抗中,进化出了不同的应对机制:一方面,植物可......

科研人员发现可同时调控水稻分蘖角度和产量基因

记者1月11日从湖南省农业科学院获悉,隶属于该院的湖南省水稻研究所联合中国农业科学院生物技术研究所,克隆了一个水稻叶绿体蛋白LTA1,其可通过影响重力反应调控水稻的分蘖角度,同时通过影响叶绿体的结构和......

中国科学家培育“抗热水稻”应对全球气候变暖

日前,中科院分子植物科学卓越创新中心林鸿宣研究组在NaturePlants期刊上发表论文。继在2015年成功定位克隆了水稻首例抗热的QTL位点TT1后,该研究组最近又成功分离克隆了水稻抗热QTLTT2......

水稻抗瘟“秘密武器”提供持久抗瘟新策略

在与病原菌长期的“军备竞赛”中,植物进化出基础抗病性免疫反应(PTI)和专业化抗病性免疫反应(ETI)两层免疫系统作为防卫武器。这两种武器各有优劣,PTI具有广谱性,但是杀伤力弱;ETI虽然战斗力强,......

研究发现水稻土微生物量碳含量是旱地土壤两倍

水稻土壤和旱地土壤有何不同?中国科学院亚热带农业生态研究所首席研究员吴金水研究团队的一项科研成果发现,水稻土中的有机质可以支撑更多的微生物生物量,其微生物量碳含量是旱地土壤的两倍。热带和亚热带地区长期......

黑龙江水稻专项交出“高分答卷”

“水稻专项执行以来,累计创制优异种质资源30份,审定新品种8个,建成1000亩以上优质水稻示范基地4个,累计推广新品种50万亩,申请或获得植物新品种权9项、获得授权1项,发表学术论文8篇,带动企业新增......

水稻大危机害虫竟为生存成为一丘之貉

近日,中国农业科学院植物保护研究所抗病虫作物生态安全评价与利用创新团队系统阐述了同以水稻为寄主的两种重大害虫——二化螟和褐飞虱通过协作应对水稻抗虫防御,实现“互利共存”的生态策略及生化和分子机理。相关......

水稻广谱抗病的免疫代谢机制研究取得进展

12月16日,Nature在线发表了中国科学院分子植物科学卓越创新中心研究员何祖华研究组题为NLRsguardmetabolismtocoordinatepattern-andeffector-tri......

筛选优异种质资源造就节水抗旱的“稻坚强”

视觉中国供图科技大奖中的“民生”关键词①编者按随着人们对美好生活期盼的日益增长,科技创新已经成为提升人们幸福感的重要手段。日前,2020年度国家科学技术奖揭晓,强调成果应用积淀是本年度获奖项目的特点之......

亲本lncRNAMISSEN调控水稻胚乳的发育

胚乳是水稻的重要组成成分,是水稻种子的主要食用部分。因此,胚乳的发育情况直接影响稻米的产量和品质。长链非编码RNA(lncRNA)是一类长度超过200nt的非编码RNA,其数量众多,在植物生长的各个环......