发布时间:2022-01-14 17:06 原文链接: 分子植物卓越中心揭示水稻耐热调控新途径

  全球气候变暖成为威胁世界粮食安全的一大重要问题,据报道,年平均温度每升高1℃,将会对水稻、小麦、玉米等粮食作物带来3%~8%左右的减产。植物在与高温的长期对抗中,进化出了不同的应对机制:一方面,植物可以通过“积极应对”来提高自身对于未折叠蛋白的清除能力,从而维持蛋白内稳态平衡以获得高温抗性(如TT1)(Li et al., 2015);另一方面,植物也可以通过“以静制动”的方式,使自身钝感,减少热响应消耗,维持正常的生理活动,并且在热胁迫结束后快速重建以提高热胁迫下的生存能力。通过遗传学手段,挖掘耐高温的自然位点并对其调控机制进行深入研究,对于作物耐高温遗传改良具有重要意义。

  G蛋白一直是植物生长发育和胁迫响应中的研究热点,但是其在热胁迫耐受的分子机制方面还未有深入研究;钙信号作为第二信使,在逆境信号的传导过程中发挥着重要作用,但是钙信号如何在热信号通路的下游被解码,并转导为生理生化响应,目前还没有合理的解释。自然位点因其在生产应用上的重要意义受到广泛关注,但是其定位难度较大,尤其是定位与耐热等复杂性状相关的位点挑战更大。继在2015年定位克隆了水稻首例抗热的QTL位点TT1,近日,中国科学院分子植物科学卓越创新中心研究员林鸿宣团队又分离克隆了水稻抗热QTL TT2,相关研究成果以TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis为题在Nature Plants上发表。该成果揭示了联合G蛋白、钙信号、蜡质代谢等分子层面的水稻耐热调控新途径。

  该研究团队通过正向遗传学方法从水稻耐热遗传资源中定位克隆到了TT2,其编码一个G蛋白γ亚基,并且负向调控水稻的耐热性;热带粳稻来源的TT2存在一个SNP,使其编码一个提前终止形式的蛋白,获得较强的耐热性,而在高温敏感的温带粳稻中,该SNP的占比较低。在热胁迫下,相较于对照,携带耐热性位点的近等基因系NIL-TT2HPS32苗期成活率显著提高,并且成熟期的单株产量也显著提高,增幅达54.7%,表明该基因位点在农业生产上有重要的应用价值。进一步的研究发现,TT2的功能有无,影响到热胁迫后的蜡质代谢通路,在高温敏感的对照株系中,蜡质相关调控基因呈现出明显的受热诱导而下调的趋势,而在抗热的NIL-TT2HPS32株系中,有一部分蜡质基因则呈现出不响应热且稳定表达的趋势,其中包括一个正向调控蜡质合成的重要转录因子OsWR2。在抗热的NIL-TT2HPS32株系中敲除OsWR2,发现其耐高温的表型消失,证明在高温胁迫下维持正常的蜡质含量对于水稻耐热是至关重要的。为了进一步建立TT2与OsWR2表达水平的调控关系,研究人员通过对OsWR2上游启动子的分析,发现了一类钙调素结合转录因子(CAMTA)的结合元件CG1-like motif,并通过同源比对,找到了两个水稻的CAMTA家族成员,并命名为SCT1和SCT2;进一步实验证明SCT1可以直接结合OsWR2的启动子,影响OsWR2的表达,并且负向调控水稻的耐热性。SCT1带有钙依赖的钙调素(CaM)结合位点,可以通过与CaM的互作来解码胞内的钙信号。G蛋白之前被多次报道参与动植物的钙信号调控(如RGA1)(Ma et al., 2015),该研究也证实了TT2的功能缺失会导致热诱导的钙信号减弱。当正常功能的TT2存在时,高温会诱导钙信号的产生并使得胞内钙浓度提高,高浓度的钙离子会被CaM感知,并促进CaM与SCT1的互作,从而加强CaM对于SCT1转录活性的抑制,最终导致OsWR2在高温条件下表达量迅速下调,蜡质减少并最终无法抵御高温,呈现出热敏感的表型。当TT2功能缺失时,热诱导的钙信号减弱,进而减弱了SCT1与CaM的互作,降低了CaM对于SCT1转录活性的抑制,最终维持了OsWR2在高温胁迫下的正常表达和稳定的蜡质含量,呈现出抗热表型。

  综上所述,该研究首次系统地将G蛋白调控、钙信号传导及解码、蜡质代谢通路联系起来,阐明了一条从上游信号产生到下游生理生化响应的调控通路,该通路独立于以往已知的通过热激蛋白、活性氧清除以及未折叠蛋白清除参与的植物耐热调控途径,是植物抗热领域的重要进展。TT2是一份作物耐热育种的珍贵基因资源,对未来作物借助分子设计手段实现定点耐热遗传改良具有重要意义。

相关文章

华中农大原校长、水稻遗传育种专家张端品逝世,享年80岁

据华中农业大学南湖新闻网消息,中国共产党优秀党员、高等教育战线久经考验的忠诚战士、华中农业大学原校长、著名的水稻遗传育种专家张端品同志于2023年6月5日14时08分在武汉因病逝世,享年80岁。张端品......

粤籼稻种质资源遗传多样性和育种选择基因获鉴定

近日,广东省农业科学院水稻研究所遗传资源研究团队利用广东籼稻核心种质开展基因组多样性和基因发掘工作,在鉴定广东籼稻种质资源遗传多样性和育种选择基因方面取得新进展。相关研究论文发表于Rice。该研究分析......

跨界共赢岛津与杂交水稻检测中心共建合作实验室

2023年5月19日,由杂交水稻全国重点实验室检验检测中心(简称“检测中心”)和岛津企业管理(中国)有限公司(简称“岛津”)联合举办的杂交水稻全国重点实验室检验检测中心-岛津合作实验室挂牌仪式暨代谢组......

两年了,我们很想您!

两年前的今天2021年5月22日袁隆平院士逝世从此,春种秋收都和怀念有关年轻时袁隆平决意报考大学的农学专业父母都不同意袁隆平说,吃饭是第一件大事没有农民种田,就不能生存最终说服了父母图片来源:央视新闻......

水稻越绿越好?这群师生破解“滞绿”密码

进入5月,水稻陆续进入忙碌季,一片片绿油油的育秧田中叶片摇曳。水稻是否越绿越好呢?现实生产中,某些不适宜的田间管理,导致水稻叶片“贪青”,延迟灌浆结实,严重限制高产潜力的发挥,被称为“滞绿”。如何科学......

华中农大建成全球首个水稻基因索引数据库

华中农业大学作物遗传改良全国重点实验室、湖北洪山实验室张建伟教授课题组近日发表最新研究成果,他们建成世界上首个基于同源基因的水稻泛基因组综合数据库——水稻基因索引数据库。据介绍,这个数据库如同一本近义......

水稻杂种优势研究方面取得新进展

杂种优势已经在多种作物和动物育种中得到广泛应用,但其分子作用机理和有效预测方法仍不明确。近日,广东省农业科学院水稻研究所杂优中心团队在水稻杂种优势研究方面取得新进展。相关研究发表于ThePlantJo......

基因编辑水稻或能在火星生长

据英国《新科学家》杂志网站15日报道,火星土壤一般不适合种植植物,但美国科学家利用CRISPR基因编辑技术,使水稻的OsSnRK1基因发生突变,经过基因编辑的水稻能在恶劣的环境下发芽生长。研究人员称,......

聂守军代表:攥紧粮食种子端稳“中国饭碗”

“把种质资源、创新品种作为推动水稻生物育种创新的关键核心,通过科技与产业化双轮驱动,提高黑龙江水稻产业整体效益及农业综合竞争力。”新当选的全国人大代表、黑龙江省农业科学院绥化分院副院长聂守军研究员向科......

土壤紧实了,如何培育钻地能力强的水稻

近日,中国农业科学院生物技术研究所作物耐逆性调控与改良创新团队揭示了脱落酸与生长素协同调控水稻根系响应外界土壤硬度的分子机制,为培育适应不同土壤硬度作物新品种提供了新的分子途径和有价值的基因资源。相关......