发布时间:2019-09-02 13:37 原文链接: 福建物构所锗(硅)酸盐倍频晶体设计与合成获进展

  金属锗酸盐通常作为闪烁晶体(BGO)和毫米器件被报道。将Ge、Si引入到硼酸盐中,无机材料学家们获得了一系列硼锗、硼硅酸盐非线性光学晶体材料。研究人员发现很多含孤对电子(Pb2+、Bi3+等)的非心锗酸盐、硅酸盐有着较高的对称性甚至立方结构导致其极化率低以及各向异性小,因此多数已有的锗(硅)酸盐晶体存在二阶非线性光学效应弱以及双折射率小的缺点,严重限制了它们的实际应用,而且锗酸盐极少作为NLO材料被报道。

  在国家基金委重点与面上项目、中国科学院战略性先导科技专项等资助下,中科院福建物质结构研究所结构化学国家重点实验室研究员毛江高团队将具有高极化能力的Bi3+和高配位的Cs+引入到锗酸盐中,通过高温固相,合成了一例一致熔融的锗酸盐倍频晶体:Cs2Bi2O(Ge2O7) (CBGO)。CBGO结晶于极性空间群Pca21。其中Bi3+形成了高度畸变的BiO5多面体,与Ge2O7通过共用氧原子形成七元环结构。这种BiO5八面体使得该化合物具有较高的极化率和各向异性,因此CBGO表现出强的倍频效应和较大的双折射率,其倍频系数为KDP的13.7倍,双折射率为0.073。理论计算表明,BiO5八面体对于CBGO的倍频性能和光学各向异性均做出了很大的贡献。相关结果在线发表在《德国应用化学》上(Angew. Chem. Int. Ed. DOI: 10.1002/anie.201909735)。另外该团队成功地将BiO5引入到硼硅酸盐体系中得到一系列结构新颖且有着较强倍频系数的Ba4Bi2(Si8-xB4+xO29)(x=0.09)(BBSBO),其倍频系数为KDP的5.1倍,论文发表在RSC期刊《化学科学》上(Chem. Sci.,2019, 10, 837)。这些研究结果为新型NLO晶体的合成提供了新的设计策略。文章第一作者均为福建物构所与上科大联培博士生唐如玲。

图片.png

福建物构所锗(硅)酸盐倍频晶体设计与合成获进展


相关文章

福建物构所钙钛矿太阳能电池研究获进展

有机-无机杂化钙钛矿因其优异的光电子性能,受到全世界研究者的关注。其作为活性层制备的太阳能电池,光电转换效率已超过25%,接近单晶硅电池的最高值。然而,通过低温溶液法制备的钙钛矿薄膜通常是多晶的。多晶......

福建物构所自驱动光电探测铁电晶体材料研究获进展

新一代光电探测器件中,外置电源一直是制约系统性能与器件小型化的关键瓶颈。因此,无需电源模块的自驱动光电探测在下一代便携式、节能光电器件中展现出广阔的应用前景。相比于传统的p-n结/异质结半导体材料,铁......

福建物构所在金属间电荷转移研究中取得进展

具有金属间电子转移性质的单分子化合物的设计合成和性能研究不仅有利于深刻揭示广泛存在于物理、化学及生物体系中电子转移现象的本质,而且这类单分子化合物在纳米或分子电子器件如分子开关、分子整流器、分子导线和......

福建物构所高能量密度锂硫电池研究取得进展

人们对便携式电子设备、电动汽车和大型智能电网等需求的不断增长推动了能量存储技术的快速发展。由于硫具有高的理论比容量、丰富的自然储备、低成本和环境友好等特点,锂硫电池被认为是一类有前景的下一代能量存储系......

福建物构所锗(硅)酸盐倍频晶体设计与合成获进展

金属锗酸盐通常作为闪烁晶体(BGO)和毫米器件被报道。将Ge、Si引入到硼酸盐中,无机材料学家们获得了一系列硼锗、硼硅酸盐非线性光学晶体材料。研究人员发现很多含孤对电子(Pb2+、Bi3+等)的非心锗......

福建物构所锗(硅)酸盐倍频晶体设计与合成获进展

金属锗酸盐通常作为闪烁晶体(BGO)和毫米器件被报道。将Ge、Si引入到硼酸盐中,无机材料学家们获得了一系列硼锗、硼硅酸盐非线性光学晶体材料。研究人员发现很多含孤对电子(Pb2+、Bi3+等)的非心锗......

福建物构所锗(硅)酸盐倍频晶体设计与合成获进展

金属锗酸盐通常作为闪烁晶体(BGO)和毫米器件被报道。将Ge、Si引入到硼酸盐中,无机材料学家们获得了一系列硼锗、硼硅酸盐非线性光学晶体材料。研究人员发现很多含孤对电子(Pb2+、Bi3+等)的非心锗......

中科院福建物构所:热响应荧光智能材料

针对特定的刺激可产生荧光转变行为的荧光材料又被称为荧光智能材料,在防伪技术、智能器件等领域有着重要的应用。相对于光、压力、化学刺激等,热刺激更容易在日常生活中得以实现,因此基于热刺激的智能材料的开发在......

福建物构所有关智能变色半导体研究有突破

智能材料能响应光、电、热、压力、磁等外来信号,输出颜色、光、电、热等各种信号,是智能器件的核心、物联网/机器人等高技术领域的重要载体。近几年以来,利用变色分子设计新型光学、电学、磁学、生物学等智能材料......

福建物构所酸性介质中电催化全解水研究取得新进展

氢能是最有前途的绿色能源形式之一,而水的电催化分解是得到高纯度氢的理想过程。近些年来,人们发现利用固体聚合物电解质膜在酸性介质中进行水的电解能使得氢气的生产和分离变得更加容易。因此,对于在酸性介质中具......