发布时间:2020-08-31 15:16 原文链接: 合肥研究院在空间反演对称结构中实现光致纯自旋流

  近日,中国科学院合肥物质科学研究院固体物理研究所计算物理团队研究员郑小宏课题组在光致纯自旋流研究中获进展,提出结构具有空间反演对称而自旋密度具有空间反演反对称的体系是利用光学伽伐尼效应获得纯自旋流的理想体系,纯自旋流的产生不依赖于光子的能量、光的偏振类型或偏振角。相关研究结果发表在Physical Review B上。

  光学伽伐尼效应(Photogalvanic Effect,PGE)是一种非线性光学效应,指在空间结构的反演对称性破缺的体系中无需施加电压,仅通过光照即可产生直流电流的现象,其在传统半导体中得到系统研究,在新兴的二维材料中也开始引发关注。但该效应自提出至今,一直受争议,科学家认为空间反演对称破缺是实现光学伽伐尼效应的前提条件,因此到目前为止,几乎所有的光学伽伐尼效应研究的对象都是空间反演对称破缺的体系。

  研究人员在研究结构具有空间反演对称、而磁性具有空间反演反对称体系的光电流时发现,在看似平静的没有净电荷流动的“表面”下却暗藏电子的定向流动,自旋向上和自旋向下的电子产生的电流大小相等、方向相反,从而形成纯自旋流。这一结果首先在三角形锯齿边反量子点修饰的扶手椅型石墨烯纳米带中实现。

  研究人员进一步发现,在这类体系中,光致纯自旋流的产生不依赖于光子的能量、光的偏振类型和偏振角。这是和以往利用光学伽伐尼效应实现纯自旋流的类似方案相比具有的优势。以往方案由于建立在体系结构必须具有空间反演对称破缺的基础上,因而产生净电荷流是必然事件,得到纯自旋流只是偶然事件,即只能对光源参数进行精密调节而在某些特定的光子能量或特定的偏振角下得到纯自旋流。

  由于这类体系中事先并不知道在什么光子能量或什么偏振角下会出现纯自旋流,以及稍微偏离其光子能量或偏振角,纯自旋流出现的条件就会消失,因而实验上难以控制。该研究提出的方案不受这些光源条件的限制,建立在结构具有空间反演对称的基础上,因此电荷流为0,只要有电子的流动就自动为纯自旋流。

  纯自旋流(Pure Spin Current)是自旋电子学的一个概念,指材料或器件中的电子在外加驱动作用下只产生自旋的流动,而没有净电荷的流动。由于纯自旋操控具有低功耗的特点,在信息的传输与存储中具有重要意义,近年来在自旋电子学领域引发关注,纯自旋流的产生是自旋电子学中的重要课题。该研究为可靠地得到纯自旋流提出了方案。

  研究工作得到国家自然科学基金的资助,相关计算在中科院超级计算中心合肥分中心完成。

  论文链接 

  图1.结构示意图

  图2.光学伽伐尼效应产生纯自旋流原理示意图

  图3.自旋向上、自旋向下和总的光电流的变化:(a)线偏振光下随光子能量的变化;(b)线偏振光下随偏振角的变化;(c)椭圆偏振光下随偏振角的变化

相关文章

新进展!“拉索”精确测量迄今最亮伽马暴的高能辐射能谱

科学家利用我国高海拔宇宙线观测站“拉索”(LHAASO),精确测量了迄今最亮伽马暴GRB221009A的高能辐射能谱,并据此获得了对伽马暴的全新认知。该研究由中国科学院高能物理研究所牵头的“拉索”国际......

植物揭秘|光谱不变理论研究

中国科学院地理科学与资源研究所研究员方红亮总结了光谱不变理论在过去二十余年的相关研究,并于近日在《环境遥感》上发表综述文章。文章系统梳理了光谱不变理论的提出背景、光谱不变理论的建模原理以及光谱不变量的......

海铃”望远镜将成为国际最先进的中微子望远镜

数百年来,科学家利用望远镜捕捉宇宙光子来进行天文观测。今天,他们有了新的选择。中微子有着如幽灵般极强的穿透力,可轻松逃逸极端、致密的宇宙和天体环境而不改变方向,有助于科学家揭晓剧烈天体过程背后的机制,......

“九章三号”助力光量子计算领域发展

11日,记者从中国科学技术大学获悉,该校中国科学院量子信息与量子科技创新研究院潘建伟、陆朝阳、刘乃乐等组成的研究团队,与中国科学院上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光......

重磅!微型高精度集成钻石量子电流传感器研制出

电动汽车、智能电网、高速列车等新兴工业应用的快速发展,对高精度的电流传感器提出了更高要求。与传统电流传感器相比,基于量子效应的传感装置可以利用量子态操控技术来提高测量的精度。这些优势使得基于量子效应的......

光子超材料表现出新物质态特征

英国南安普顿大学研究人员在最新一期《自然·物理学》上发表论文称,经典的超材料纳米结构可驱动到一种状态,表现出与连续“时间晶体”相同的关键特征。时间晶体最初在2012年提出,它是一种新的物质状态,其中粒......

光合作用中氧气形成细节揭示

据《自然》杂志3日发表的论文,美国和德国两个科研团队首次揭示了光合作用过程中氧气如何形成的微观细节,了解光合作用过程中的水分解对于开发将水转化为氢燃料的设备非常重要。光合作用是植物、藻类和一些细菌利用......

光子时间晶体放大光线可以增强通信设施和激光器的能力

研究人员已经开发出一种创建光子时间晶体的方法,并表明这些奇异的人造材料能够放大照在它们身上的光线。发表在《科学进展》杂志上的一篇论文中描述了这些发现,它们可能会带来更高效和更强大的无线通信手段,并大大......

卿光焱团队制备基于光子纤维素纳米晶的柔性汗液传感器

近日,大连化物所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)......

南开大学在拓扑光子学领域取得新进展

从数学到化学、生物学,再到凝聚态物理、光学,与拓扑相关的现象俯拾皆是。拓扑的概念拓展到光学,形成了拓扑光子学这一新兴研究领域,近几年不断开拓,蓬勃发展。最近,高阶拓扑绝缘体(HOTI)由于其打破了传统......