发布时间:2021-09-19 12:17 原文链接: 加速崛起的黄金赛道?一文深度了解

  一、细胞与基因治疗逐渐成熟,已步入快速发展通道

  (一)细胞与基因治疗直接作用于遗传物质,临床应用前景广阔

  细胞与基因治疗是指将外源遗传物质导入靶细胞,以修饰或操纵基因的表达,改变 细胞的生物学特性以达到治疗效果的一种新兴治疗方式。其作用机制主要包括以下 三个方面:

  (1)替换:用正常的基因替换引起疾病的基因;

  (2)失活:使功能异 常的基因失去活性;

  (3)插入:向体内引入一个新的或者经过修改过的基因。

  不同于小分子、抗体类药物,细胞与基因治疗由于可以直接作用于遗传物质,对于 很多无法找到成药靶点的疾病具有较大的应用潜力。自20世纪90年代以来,细胞与 基因治疗领域的相关研究呈现持续上升的趋势,此领域的研究关注度逐渐提升。

  1.jpg

  根据Drug Discovery Today披露,截止2020年7月,全球共开展了2106项细胞与基 因治疗临床试验,其中美国、中国和欧盟的细胞与基因治疗临床试验数量占据了半 壁江山。美国政策法规体系更为完善,促进了基因治疗临床研究的快速发展。而中 国近年来也在逐步完善相关政策法规体系,加大科研和临床投入力度,成为了基因 治疗临床试验的重要孵化地。从适应症来看,肿瘤仍然是基因治疗的第一大疾病种 类,占比65.2%,各类肿瘤,包括血液、皮肤、中枢神经系统、前列腺、胃肠、乳房、肺部和甲状腺可癌都有临床试验在进行中;其次是遗传性罕见病、心血管疾病 和感染性疾病等。

  尽管细胞与基因治疗的概念由来已久,但第一次临床试验直到1990年才在NIH开展, 用于针对一种罕见的免疫缺陷病的治疗,从此细胞与基因治疗经过了初步兴起、黯 然沉寂和谨慎复苏三个阶段。作为一种可以替代传统疗法的新兴治疗方式,细胞与 基因治疗在众多疾病,特别是癌症、遗传疾病和传染病的治疗中展现出巨大的潜力, 伴随着技术和产业化的不断发展,预计未来获批产品将迎来进一步增长。

  截止目前,全球共有19款细胞与基因治疗药物已经获批上市,包括CAR-T疗法、干 细胞疗法、溶瘤病毒疗法和基因疗法等。第一款基因治疗药物于2003年在中国上市, 有两款药物Zalmoxis和Glybera已经黯然退出市场。CAR-T疗法Kymriah、Yescarta 和基因疗法Zolgensma等自上市以来,销售额增长可观,市场渗透率逐步提升,根 据诺华2021年中报披露,Zolgensma在2021年上半年的销售额更是达到了6.34亿美 元,同比增长69.07%。据Drug Discovery Today披露,自2017年开始全球细胞与基 因治疗产品商业化进程持续加快,预测到2022年将有40款细胞与基因治疗产品批准 上市。

  2.jpg

  截止目前,中国仅两款经NMPA批准在售的细胞与基因治疗产品,安科瑞和阿吉伦 塞注射液均为肿瘤治疗药物。随着国内研发投入的增加、技术不断成熟以及相关监 管体系的不断完善等因素推动下,预计在未来将有更多的产品进入中国市场。

  1. 细胞与基因治疗按形式可分为体外治疗和体内治疗

  体外治疗指从病人体内获得细胞,在体外系统中经过基因操纵后再输回病人体内的 治疗方式。这类治疗通常需要一个能递送基因并且整合进基因组的载体(例如慢病 毒载体、逆转录病毒载体等),并且依赖于能用来进行一系列细胞操作的先进设备。体外基因治疗主要包括两大方面,针对T细胞的疗法和针对造血干细胞的疗法。其中 发展最为成熟的为CAR-T细胞治疗,诺华的Kymriah、Kite的Yescarta和Tecartus、 Juno的Breyanzi以及Celgene的Abecma近几年都已获批上市。国内复兴凯特的阿基 伦塞注射液也已获批上市,药明巨诺的瑞基仑赛注射液预计将于今年下半年获批成 为第二款国内CAR-T疗法。

  体内治疗指直接在病人体内进行基因治疗来补偿或者抑制缺陷基因。在体内治疗模 式下,遗传物质可直接或者间接地被递送入体内。体内治疗操作相对简单,但是对 递送载体的要求更高,需要载体具有组织趋向性、稳定的表达能力和较低的免疫原 性。

  2. 细胞与基因治疗按产品可分为五种类型

  根据FDA对于细胞与基因治疗产品的分类,细胞与基因治疗也可分为质粒DNA、病 毒载体、细菌载体、基因编辑系统和体外编辑细胞产品。

  质粒DNA:通过基因工程改造过的环状DNA分子可以携带治疗基因,进而导入人体 细胞中。

  病毒载体:由于病毒天生具有能传递遗传物质到哺乳细胞中的能力,因此一些基因 治疗产品由病毒衍生而来。通过修饰可以去掉病毒引起传染病的能力,使病毒可以 被用作载体来携带治疗基因进入人体细胞中。

  细菌载体:和病毒类似,细菌也可以通过修饰去掉其能引起感染疾病的能力,然后 作为遗传物质的载体将其递送入细胞中。

  基因编辑系统:基因编辑系统不同于病毒载体只能介导基因的增补,其能作为一把 基因剪刀发挥强大的功能,包括基因增补、基因删除、甚至对基因进行精确的校正。

  体外编辑细胞产品:从病人体内获得细胞,经过遗传修饰后再回输回病人体内的一 种治疗模式。在癌症的CAR-T治疗中应用尤为广泛。

  (二)细胞与基因治疗递送载体:腺相关病毒载体的临床应用最为广泛

  细胞与基因治疗的载体主要包括病毒和非病毒载体,病毒载体由于其递送效率高、 具有组织特异性、可插入宿主基因组等特性,在药物研发中被广泛使用,约70%细 胞与基因治疗的临床试验使用病毒载体;而非病毒载体具有操作简单、成本小、免 疫原性低等特点,也受到越来越多的关注。

  1. 病毒载体仍是细胞与基因治疗主流递送载体

  逆转录病毒载体、腺病毒载体、慢病毒载体和腺相关病毒载体是目前临床上使用最 多的病毒载体,其中逆转录病毒载体、慢病毒载体由于能整合进宿主细胞基因组这 一特性,常用于体外细胞与基因治疗中将目的基因导入干细胞或T细胞中,实现基因 的长期表达;腺相关病毒载体和腺病毒载体则常用于体内细胞与基因治疗,降低外 源基因整合的风险。

  逆转录病毒载体:逆转录病毒为具有囊膜的单链RNA病毒,直径为100~120nm,γ逆转录病毒载体能整合到宿主细胞基因组中,1990年作为第一个被FDA批准的病毒 载体用于针对ADA-SCID的临床试验中。Kite pharma的两款已上市CAR-T产品均使 用逆转录病毒作为载体。γ-逆转录病毒基因组结构简单,仅含三个编码蛋白gag(编 码衣壳蛋白),pol(编码复制相关酶)和env(编码囊膜蛋白)。

  慢病毒载体:慢病毒载体来源于HIV-1型病毒,也是具有囊膜的单链RNA病毒。由于 其能感染分裂细胞和非分裂细胞、感染效率高、能整合到宿主基因组中和具有相对 较大的装载容量等优势,在体外细胞和基因治疗中被大量使用。FDA已上市的五款 CAR-T产品中,Abecma、Breyanzi和Kymriah均使用慢病毒作为载体。目前常用的 慢病毒载体包被系统为四质粒系统:包含目的基因片段的载体,表达Gag/Pol的载体、 表达Rev的载体和包膜载体VSV-G。

  腺病毒载体:腺病毒载体为非包膜的双链DNA病毒,直径约70~100nm,不能整合 到染色体上。腺病毒载体在机体内表达时间较短,并且免疫原性相对较高。目前常 用的腺病毒载体亚型为5型和2型。我国目前有两款已上市的腺病毒载体药物,深圳 赛百诺的重组人P53腺病毒注射液(今又生)和上海三维的重组人5型腺病毒注射液 (安柯瑞)。另外,康希诺生物的重组腺病毒载体新冠疫苗也采用5型腺病毒载体。重组腺病毒载体包含两个质粒与一个细胞系:包装质粒、包含目的基因的质粒和稳 定表达E1基因的细胞系(如HEK293)。

  腺相关病毒载体:腺相关病毒载体是一种单链DNA病毒,直径约25nm,是目前被认 为最安全有效的基因治疗载体,单次注射就可以实现目的基因的长期表达。天然的 AAV有12种不同的血清型(AAV1-12),每一种AAV血清型具有不同的组织趋向性, 可靶向不同的组织。重组AAV为三质粒系统:包含目的基因的质粒,与复制和包被 有关的质粒和辅助质粒。

  腺相关病毒载体是全球目前临床研究和使用得最多的载体。根据Nature Reviews Drug Discovery披露,从2003年到2019年,使用AAV作为载体的临床研究逐年增多, 就目前来看,大多数研究处于临床早期阶段。从临床试验来看,AAV主要用于眼部、 大脑、肌肉和肝脏疾病的治疗中。据Dmitry A. Kuzmin等人对AAV的临床试验进行统 计分析的结果,其中,使用得较多的亚型是AAV2,有大约40个关于AAV2的临床试 验已经完成,其中有4个临床III期试验,其余为临床I、II期试验,因此AAV2的安全 性和有效性得到了较好的验证。自2015年以来,AAV8和AAV9也逐步成为更多针对 中枢神经系统的临床试验的选择。

  3.jpg

  AAV进入细胞的过程依赖于细胞表面糖基化受体识别AAV衣壳蛋白,因此AAV衣壳 蛋白决定了其组织靶向的特异性。为了获得较低免疫原性和特异组织趋向性的载体, 行业发展的重点在于寻找新的AAV衣壳蛋白,多家公司都已布局该发现平台,包括 Sarepta、Roche/Spark、诺华/Avexis、武田和CRISPR Therapeutics。AAV进入细 胞核之后,绝大多数情况会以游离的环状DNA的形式存在,能在宿主细胞中稳定并 持续表达。

 4.jpg

  根据FDA、EMA披露,目前已经有3个基于AAV的基因治疗产品获批上市,其中Glybera于2012年在欧盟上市,使用的血清型为AAV1,但由于其高昂的治疗费用, 目前已经退市。而另外两个在美国上市的AAV治疗产品分别使用了AAV2和AAV9作 为载体,分别用于治疗眼部疾病和肌肉萎缩症。

  2. 非病毒载体是基因递送技术未来的发展方向

  非病毒载体包括裸露DNA,外泌体、聚合物纳米颗粒和基于多肽的复合物等,近来来技术平台正在快速发展,有望在将来替代病毒载体,降低细胞与基因治疗药物开发成本。

  (三)CAR-T 细胞治疗:研发热情高涨,成果转化在即

  CAR-T细胞治疗是2013年以来肿瘤免疫治疗领域最具突破性的疗法,目前已经有5 款产品成功获得美国FDA批准上市,有多款具有潜力的产品也会在近期陆续推向市 场。

  CAR-T细胞的设计:CAR主要由三部分组成,胞外识别域为针对肿瘤相关抗原的单 链抗体,决定了CAR的特异性和安全性,是CAR-T疗法成功的关键,目前临床上最 常用的靶点为CD19,主要用于治疗血液肿瘤;胞内激活域来自于第一、第二信号受 体的胞内段,用于激活T细胞;连接胞外域和胞内域的跨膜区和铰链可将胞外刺激转 化为胞内信号。

  CAR-T细胞疗法已经历五代技术更迭,第二代CAR仍是当前临床试验主流。第一代 CAR的胞内域只含有CD3ζ,治疗效果不甚理想。第二代CAR的胞内域在第一代的 CD3ζ基础上引入了共刺激受体(CD28或4-1BB)的胞内段,具有更强的T细胞增殖 能力和持久性,目前临床上多使用第二代CAR,已获批的CAR-T疗法均采用第二代 CAR。据Nature Reviews Cancer数据,诺华的Kymriah和Celgene的Abecma使用 4-1BB作为共刺激受体,Kite的Yescarta则使用CD28作为共刺激受体。第三代CAR 同时引入两个共刺激受体进一步增强CAR-T细胞的增殖和治疗效果,第四代和第五 代CAR通过激活或增强下游基因的表达以增强治疗效果。

  5.jpg

  CAR-T细胞的治疗流程:从病人外周血中分离出T细胞是CAR-T治疗的第一步,在体 外激活T细胞后,对其进行基因修饰,使T细胞表达相应的CAR结构,再在体外扩增 培养至一定数量后,回输到患者体内。CAR-T细胞将越过MHC呈递机制,直接识别 并消灭肿瘤细胞。在整个治疗流程中,对T细胞的基因修饰是CAR-T细胞治疗的技术 核心,直接决定了CAR-T的靶向性和有效性;而短时间内体外激活T细胞和扩增 CAR-T细胞是对技术工艺挑战最大的部分。

  CAR-T治疗中存在的两个主要问题为针对于实体瘤的有效性和治疗的安全性:尽管 CAR-T在血液肿瘤的治疗中取得了很多突破性进展,但是针对实体瘤的治疗效果仍 然非常有限,因为实体瘤的微环境复杂,导致回输的CAR-T细胞很难到达实体瘤内 部,限制了其疗效的发挥。另外,细胞因子释放综合症也会出现在CAR-T治疗中, 这是由于大量激活的T细胞释放过多的TNF-α,IFN-γ和IL-1、2、6、8等和炎症相关 的细胞因子,使患者出现发烧、低血压、呼吸衰竭等副作用,严重时甚至导致患者 死亡。目前FDA已批准5款CAR-T细胞疗法,其中4款疗法靶向CD19抗原,1款靶向 BCMA抗原,以上5款CAR-T疗法均针对血液肿瘤,针对实体瘤的CAR-T细胞疗法仍 有很长的道路去走。

  我国CAR-T疗法研究进展:我国CAR-T疗法临床试验的注册数目已超越美国,成为 临床研究数目最多的国家。目前国内CAR-T疗法的开发主要依赖于三种模式。

  (1)合作引进开发:包括已经上市的阿吉伦塞注射液,由Kite Pharma与上海复星 医药的合资企业复星凯特生物科技有限公司开发;以及瑞吉伦塞注射液由Juno Therapeutics与药明康德的合资公司药明巨诺开发,引进Juno的Breyanzi。

  (2)国内企业自主开发:代表公司南京传奇生物自主研发的cilta-cel是一款靶向 BCMA的疗法,有望于今年上市。

  (3)外企独立开发:诺华的CTL-019 (tisagenlecleucel)为国内独自开发,目前正在 开展针对侵袭性B细胞非霍奇金淋巴瘤的III期临床试验。

  2021年6月我国批准了首款CAR-T细胞治疗产品阿吉伦塞注射液,复星凯特于2017 年引进自Kite Pharma的Yescarta。阿吉伦塞注射液同样靶向CD19,用于治疗二线 或以上系统性治疗后复发或难治性大B细胞淋巴瘤,包括弥漫性大B细胞淋巴瘤 (DLBCL)非特指型、原发性纵隔B细胞淋巴瘤(PMBCL)、高级别B细胞淋巴瘤 和滤泡淋巴瘤转化的DLBCL。药明巨诺的瑞吉伦塞位于第二梯队,于2020年6月申 报上市,预计近期将会获批。据金斯瑞生物财报披露,传奇生物的cilta-cel将在下半 年在中国递交上市申请,并预计年底将在美国上市。

  (四)基因编辑技术助力细胞与基因治疗蓬勃发展

  不同于已经日趋成熟的病毒载体和细胞疗法,基因编辑系统向临床的转化正处于早 期阶段,目前尚无产品上市,但是多个临床试验正在进行中,并且取得了不错的临 床效果,预计基因编辑治疗在未来十年将迎来更加快速的发展,也会逐步有产品陆 续上市。基因编辑的目标在于破坏有害基因的表达,修复突变基因。

  1. ZFNs:临床转化和开发被垄断的第一代基因编辑技术

  ZFN技术发展于1996年,其目的基因特异性识别基于锌指蛋白,DNA切割依赖于Fok I核酸内切酶。每个锌指蛋白可识别并结合一个特异的三联体碱基,通过锌指蛋白的 排列,可实现对DNA序列的靶向性。但是ZFN的研发成本相对较高,合成较为困难, 涉及到蛋白筛选体系,因此技术开发和临床研究发展缓慢。Sangamo Therapeutics 具有ZFN的数个关键专利,几乎垄断了ZFN技术的所有临床转化和开发。

  6.jpg

  2. TALEN:临床应用发展较为滞后的第二代基因编辑技术

  TALEN技术发展于2011年,工作原理与ZFN基本类似,DNA切割同样依赖于Fok I 核酸内切酶,但其目的基因特异性识别基于转录激活因子效应物,每两个氨基酸组 合对应一个特定的碱基。TALEN的识别技术相比较于ZFN设计更加简便,操作更加 灵活,但其高昂的研发费用仍然在一定程度上阻止了其发展。

  7.jpg

  3. CRISPR/Cas9:突破性的第三代基因编辑技术

  2012年,基于细菌获得性免疫系统的CRISPR/Cas9基因编辑技术出现并运用于哺乳 动物中。CRISPR/Cas9的sgRNA可与基因组上特定序列结合,招募Cas9核酸内切 酶并产生DNA双链断裂。作为目前最热门最强大的基因编辑系统,CRISPR/Cas9技 术由于其简单快捷的设计和构建方法、低廉的成本和较低的脱靶效率,被迅速运用 于各类疾病的细胞与基因治疗中,为其带来了革命性的突破,在临床上极具应用潜 力。

  2016 年 , 四 川 大 学 华 西医院 为 国际上 首 个 开 展 CRISPR/Cas9 临 床 研究(NCT02793856)的机构,利用基因编辑技术在T细胞中敲除PD-1基因治疗非小细 胞肺癌。2019年,EDIT-101被FDA批准用于Leber先天性黑蒙症10型的临床治疗研 究中,这是第一个体内开展的CRISPR/Cas9临床试验。目前为止,在ClinicalTrials 有超过30个基于CRISPR/Cas9的细胞与基因治疗临床试验注册,其中绝大多数为针 对肿瘤的临床试验,也有针对血液和眼部疾病的临床试验。中国是目前为止基于 CRISPR/Cas9技术开展临床试验最多的国家。

  新型CRISPR/Cas9技术:近几年基因编辑技术不断创新,更迭迅速,除了传统的 CRISPR/Cas9技术以外,一些新型的基于CRISPR/Cas9的基因编辑技术也逐步出 现,包括CRISPRi,CRISPRa,碱基编辑器和引导编辑等。这些新型编辑技术的出 现,大大提高了CRISPR/Cas9的灵活性和精确性,对未来应用提供了新的方向。

  二、细胞与基因治疗行业国外蓬勃发展,国内乘势追击

  根据和元生物招股说明书披露,全球细胞与基因治疗市场规模呈现高速增长的态势, 从2016年至2020年,全球市场规模从5040万美元增长到20.75亿美元,复合增长率 达71.2%,预计至2025年,细胞与基因治疗市场规模将达到305.39亿美元。2017年 以来,中国细胞与基因治疗市场规模仍然较小,只在千万级别,2017年至2020年市 场规模为1500万人民币增长至2380万人民币,复合增长率为12.2%。但随着我国政 策的利好、临床试验的广泛开展和科研技术的逐步推进,预计2025年中国细胞与基 因治疗市场规模将达到178.85亿人民币。

  图片

  一)细胞与基因治疗临床管线数目逐年上升,未来将迎来商业化热潮

  近几年随着基础研究的进步、相关政策的落地,细胞与基因治疗发展态势良好,临 床试验的数目呈现逐年上升的趋势,肿瘤的治疗是这个领域的核心。细胞与基因治疗临床管线的数目在2020年达到了405个,2017 年到2020年的年复合增长率达28%,远远超过了2012年到2017年的12%的水平。其 中大部分试验都集中在临床I期和II期,只有少部分进入了临床III期,细胞与基因治疗 正在从一个新兴的治疗形式逐渐走向成熟。

  (二)资本热情高涨,细胞与基因治疗投融资及兼并收购火热

  近年来细胞与基因治疗行业的蓬勃发展吸引了大量资本的流入,风险投资、私募股 权、IPO等异常火热。尤其是2017年FDA批准Luxturna,Kymriah和Yescarta上市以 来,细胞与基因治疗市场融资规模更是快速增长。据L.E.K.披露,细胞与基因治疗融 资总额从2017年的约80亿美元增长到2020年的约200亿美金,大大促进了细胞与基 因治疗市场的发展。

  8.jpg

  自2017年以来,细胞与基因治疗合作开发和兼并收购数目显著增多。据DealForma 数据库披露,仅2020年就有24起合作开发项目,总计达112亿美元的交易金额。其 中,Biogen与Sangamo以27.2亿美金对价达成了神经疾病基因疗法开发的独家合作;澳大利亚血制品药企CSL Behring以20.5亿美金与基因治疗先驱uniQure就B型血友 病的开发达成协议。大型药企与基因治疗技术公司之间强强联手合作开发的模式将 极大地加快细胞与基因治疗药物的开发和商业化进程。

  2019年至2020年总共发生了9起兼并收购项目,总计达134亿美金的交易金额。前有 Roche以43亿美金收购基因疗法领先企业Spark的全部产品和研发管线,后有Bayer 40亿美金收购AAV基因疗法领先公司AskBio,布局细胞与基因治疗领域。

  基因疗法市场前景广阔,资本不断涌入,大型药企也通过收购、合作开发、自主研 究等形式踏足基因疗法,为细胞与基因治疗的发展提供持续动力,据McKinsey披露, 到2020年2月为止,全球Top 20药企中已有16家布局细胞基因治疗研发管线。

 9.jpg

  (三)中国细胞与基因治疗加速布局,市场化进程指日可待

  中国细胞与基因治疗萌芽略落后于美国,1991年开展了国际上第二个基因治疗临床 试验,标志着中国基因治疗的开端,2003年我国率先批准了世界上第一款基因治疗 药物“今又生”。我国细胞与基因治疗行业经过近30年的发展,已累计成立近500家细 胞与基因治疗企业。这些企业聚焦在药物研发领域,并不断取得较大的突破。国内 孕育了一批细胞与基因治疗本土企业,如针对肿瘤CAR-T治疗的南京传奇、科济生 物、艺妙神州,深耕基因编辑疗法的博雅辑因,溶瘤病毒治疗领域领先的上海希元、 澳元和力等。这些企业在技术产品研究和临床领域都取得较大进步,也在不断地加 速布局规模化生产,中国细胞与基因治疗市场化进程指日可待。

  三、细胞与基因治疗工艺化技术的壁垒和成本控制的关键

  (一)细胞与基因治疗 CDMO 行业主要底层工艺路线:质粒、病毒载体和细胞工厂

  细胞与基因治疗CDMO能为研发公司提供从工艺开发、生产制造到商业化的端到端 全套服务。其上游主要涉及到试剂、耗材、仪器和设备的供应,下游为基于病毒载 体、CAR-T细胞等细胞与基因治疗药物研发公司。

  不管是体内基因治疗还是体外基因治疗,相关CDMO的底层技术工艺路线主要包含 三个方面:质粒、病毒载体和细胞工厂。提升这三个方面的工艺开发技术、大规模 生产能力,从而更好地进行质量控制和成本控制对于CDMO公司的成功至关重要。

  (二)质粒:细胞与基因治疗的关键起始物料和生产的主要成本来源

  质粒具有共价封闭的环状结构,是独立于宿主染色体进行自主复制的核酸分子。质粒常见于原核细菌和真菌中,典型的质粒元件包括原核复制起点、抗性基因、多克 隆位点、启动子、目的基因筛选标记和目的基因,细菌质粒是细胞与基因治疗中最 常用的质粒载体,用于大量扩增DNA片段、进行基因改造或者直接作为目的基因的 导入工具。

  质粒作为绝大部分细胞与基因治疗产品的起始物料,其应用场景非常广泛。可作为 细胞与基因治疗载体直接作用于人体,也可用作病毒载体生产的原料或者mRNA疫 苗生产的模版。尽管质粒的工艺生产流程基本一致,但其不同的用途和在不同应用 场景的质量控制要求不同,决定了质粒的生产规模和纯度也是成本控制的关键。

  质粒工艺化生产流程包括逐级放大的菌体扩增过程和下游纯化过程,细胞与基因治 疗中最常用的载体AAV和慢病毒的生产都需要质粒作为起始材料,因此每年需要大 量符合质量要求的质粒来满足下游细胞与基因治疗的市场需求。质粒生产工艺中面 临的最大挑战是大规模的生产放大和纯化,即要维持高超螺旋结构质粒的比例,又 要保持高纯度,以上两点无论对于DNA疫苗还是对于下游病毒生产的效率与质量 (如减少空壳率等)形成重大影响。

  质粒通常在大肠杆菌中发酵扩增,提高大肠杆菌的生长密度可扩大质粒的产量。但 细菌密度增加会带来溶氧不足的问题,不仅会降低质粒产量,还会导致质粒质量下 降,具有超螺旋构象的质粒含量减少,给下游纯化工艺带来困难,也会间接提高生 产成本。对大肠杆菌发酵过程中的溶氧量问题进行优化后,可使质粒产量提高1至50 倍。

  大肠杆菌的裂解包含化学方法(碱、洗涤剂、酶、渗透冲击)和物理方法(加热、 剪切、搅拌、超声波和冻融),其中碱性裂解是最常用的方法。碱裂解步骤中,pH 的控制和适当有效的混合是关键,需要在狭窄的pH范围内使基因组DNA发生不可逆 变性且质粒双链需要保持完整,大规模质粒生产中,裂解过程往往工艺重复性差, 难以控制;该阶段的质粒对剪切力非常敏感,质粒损失较大,超螺旋也容易丢失, 影响产量和质量。

  质粒生产过程中常用层析法或色谱法进行纯化,不同开发阶段和使用级别对质粒的 质量要求不同。质粒纯化的目的在于去除宿主DNA、RNA、蛋白和内毒素以及非超 螺旋的质粒变体,以满足针对目标产品的使用要求,纯化过程的优化可提高质粒产 量、降低成本。质粒作为细胞与基因治疗药品的生产原料,需要对其理化性质进行 鉴别,确保目的基因序列及整合无误;作为关键原材料或终产品,需要对其功能进 行鉴定和控制;为保证安全性,对内毒素、杂菌污染和支原体残留的鉴别和检测的 周期往往约30天左右,决定着质粒生产批次放行的周期;此外,质粒因为无法终端 灭菌,因此需要全程在封闭且独立的生产车间进行,且要避免交叉污染,因此自动 化、封闭式的系统是未来趋势。

  当使用高拷贝数质粒、采用优化的发酵工艺可获得约1-2g/L的质粒,但目前行业内绝大部分公司的质粒产量不到0.5g/L,工艺优化的空间还非常广阔。质粒由于结构 简单,且理化性质相似,因此构建一个平台化的生产和纯化工艺相对简单。质粒生 产周期较短,上游发酵和下游纯化罐装工艺约需6天,但质粒的质量控制约需30天(主 要对支原体等检测周期较长),质粒生产的年产能可达100批次。

  综上,质粒生产的工艺优化对于提升质粒的产量和质量具有极大的意义,在大肠杆菌大规模发酵、质粒的提取和纯化工艺上,目前仍然具有非常广阔的优化空间。

  (三)病毒载体:高昂的生产成本是细胞与基因治疗商业化的痛点

  1. AAV生产成本的关键在于质粒和细胞培养体系

  HEK293细胞/三质粒系统是AAV生产的主流系统:AAV生产系统包括HEK293细胞/ 三质粒系统和依赖于昆虫杆状病毒、腺病毒、单纯疱疹病毒或痘病毒的包装系统。以HEK293细胞/三质粒系统和昆虫杆状病毒系统最为常见,但由于昆虫杆状病毒系 统的单个细胞生产效率低、病毒活性低等特点,目前业内最主流的还是采用HEK293 细胞/三质粒生产系统。

  AAV载体生产成本的控制较为关键。据Nature Reviews Drug Discovery披露,目前 约有238个基于AAV的细胞与基因治疗临床试验正在开展,是临床试验中使用最多的 病毒载体之一。AAV细胞与基因治疗产品价格高昂的主要原因在于其工业化生产的 多个方面未得到全面优化,如何降低成本、扩大商业化生产能力是AAV基因治疗产 业化的最大难题。我们以AAV的生产工艺过程为基础,分析AAV载体生产过程中的 成本控制关键。

  质粒是AAV生产成本的主要来源:根据Polyplus公司披露,AAV载体生产过程中, 质粒约占了生产成本的40-60%,除此以外,细胞和培养基以及血清约占生产成本的 20-30%。质粒价格约为10-30万美元/g,质粒用量大约为1μg/106个细胞。对于病毒 载体生产,每升生物反应器大约平均需要0.5mg质粒DNA进行瞬时转染细胞,各厂 家依据所用转染试剂的不同,每升生物反应器的质粒需求量也有所差异。因此优化 的质粒生产工艺(提升产率与质量)和减少下游质粒的使用量(如开发效率高的转 染试剂)能大幅降低AAV载体生产成本。

 10.jpg

  悬浮培养是AAV生产的未来趋势:AAV的规模化生产包括贴壁培养体系和悬浮培养 体系。传统的贴壁培养工艺放大难、人力需求高且必须使用血清,达到的细胞密度 低,因而产量更低;微载体或片状载体培养系统在提高细胞产量的同时还能大大减 少人力成本,但是最大的缺点在于高效转染难;而悬浮细胞培养技术能更大程度满 足临床规模生产,并且无血清悬浮培养能减少血清的使用,不仅能降低生产成本, 还能简化下游纯化技术(上游生产不需要添加血清)。然而,悬浮培养技术发展的 难点在于细胞易成团并且驯化无血清悬浮细胞系的过程比较难,耗时长。然而,基 因治疗方式从局部给药拓展到系统性给药过程中,基于AAV的基因治疗药物治疗剂 量也将指数级增加,成本也相应的大幅提升,因此开发生产成本更低的悬浮培养模 式代表着未来发展方向。

  目前大部分公司正在从贴壁培养技术过渡到悬浮培养技术,据CRB披露,约有65% 的公司正在建设或预计建设悬浮细胞病毒载体生产平台。国内宜明细胞的200L无血 清AAV制备平台采用悬浮细胞培养技术,可制备包括rAAV2、rAAV5、rAAV8和rAAV9 等多种符合GMP的AAV血清型,病毒产量可高达1E14vg/L,细胞的密度可达1E7 cells/mL。

  Pall公司Emmanuelle Cameau等人于2019年在Cell & Gene Therapy Insights上对 不同培养体系下AAV生产成本进行了拆分,悬浮培养体系单剂量的生产成本为 11953美元,相比细胞工厂的成本15152美金,降低了20%,质粒DNA是生产成本的 主要来源之一,成本占比约38%;采用Pall的iCELLis固定床生物反应器,能提高细 胞浓度和转染效率,大大减少质粒用量,因此进一步降低了生产成本,单个剂量的 AAV生产成本仅7723美金至9654美金,质粒成本占比降低至20%以下。综上,对培 养体系的优化对于AAV生产成本的降低至关重要,培养体系的优化方向主要在于增 加细胞培养密度、减少质粒用量并提高转染效率。

  高质量的转染试剂是AAV生产的核心要素,决定了质粒用量、病毒得率和纯度:转 染试剂在很大程度上决定了质粒的用量、病毒得率和纯度。大规模生产上常用的转 染方式有两种,磷酸钙转染法和PEI转染法(聚乙烯亚胺),赛默飞的LIPO 2000(一 种脂质体)转染效率最高,然而价格昂贵,大规模生产中使用较少。磷酸钙转染的 优点为价格便宜,但缺点为效率非常低,并且误差很大,很难达到工艺的一致性, 因此难以用于临床级病毒载体的生产。目前主流的方式为PEI转染法,PEI为阳离子 聚合物,可以与带有负电荷的核酸结合从而形成复合体通过内吞作用进入细胞中, 成本相对较适中。

  PEI决定了达到高转染效率时所需的质粒用量。据转染试剂供应商Polyplus数据显示, PEI转染HEK293细胞时所需质粒用量约为1~2.5 μg/106个细胞,这决定了病毒生产 时需要大量的质粒。因此对于PEI的优化可以减少质粒用量、提供病毒生产效率,从 而降低成本。Polyplus的FectoVIR-AAV转染体系使用PEI转染后,使病毒生产中的 空壳率有效降低,病毒产量实现提升2至10倍,并且病毒的感染能力也大大提升,同 时质粒的用量能减少1/3,使得单个批次的生产成本得到大幅降低。

  AAV生产下游工艺复杂,整体回收率低:AAV病毒载体生产的下游工艺包括细胞裂 解、澄清、核酸酶处理、超滤、色谱柱纯化、超滤浓缩、除菌过滤及罐装等,涉及 的工艺复杂。由于AAV常用于在体的基因治疗,因此对纯度和浓度的要求都非常高。

  下游需要有较强的纯化能力,用于去除工艺相关杂质和产品相关杂质,特别是空壳 病毒。工艺相关杂质如细胞基质、细胞培养和发酵培养基组分等的去除相对容易, 可采用核酸酶、超滤和亲和层析的方式去除;而产品相关杂质如空壳病毒、聚集体 和降解产物等较难去除,特别是空壳病毒,其在患者体内不仅会竞争细胞表面有限 的受体,而且还有引起过度免疫反应的隐患。由于当将它们输注给患者时,一方面 会竞争细胞表面有限的受体数量;另一方面对基因治疗无益处,还有可能引起副反 应。由于空壳病毒和完整病毒仅等电点存在细微差异,因此分离困难,通过高分辨 率阴离子交换树脂可以降低空壳比。

  为了得到最佳收率和分离效率,不同的AAV血清型需要设计不同的层析方案。原因 在于AAV血清型与阴离子交换填充的结合特性不同,Benjamin Adams等在 Biotechnology Bioengineering对AAV的精制层析进行了研究,指出AAV5需要在偏 酸性条件下才能有效地与阴离子交换填料结合,而AAV8则在偏碱性条件下最佳。所以工艺上难以针对AAV设计一个平台化的通用纯化方法,从而增加了生产成本。

  为了达到治疗所用的AAV浓度,原液产物通常需要浓缩100倍至10000倍,下游纯化 也会有部分损失,因此对GMP设备提出了较大的挑战。上游工艺获得的病毒约为 1E4-5E5vg/细胞的载体滴度,粗收获液中的单位体积滴度约为1E10-2E11vg/mL, 而AAV的临床给药范围通常为1E12vg/kg/mL-1E14vg/kg/mL,因此产物需要浓缩达 100倍至10000倍。AAV的下游整体回收率仅30-40%,还存在很大的优化空间,提 升下游回收率可大幅增加产量,控制生产成本。

  系统性给药方式对AAV的需求量增加,成本更会成为商业化的一大痛点。根据Nature Reviews Drug Discovery的数据显示,从局部眼睛的用药到肌肉、血液等大范围、 系统性的用药,其所需病毒载量呈现10至10000倍增长,局部给药与系统给药剂量 具有数量级的差异。从支付端来说,直接导致了大范围系统性给药的价格的大幅提 高,例如针对眼部疾病的Luxturna售价为85万美金,而肌肉给药的Zolgensma售价 达210万美金;从成本端来说,未来针对系统性给药的治疗方式,成本和难以满足的 需求更会成为商业化的一大痛点。

  总的来说,作为目前临床试验使用最多的病毒载体,AAV的生产成本控制至关重要, 不仅能降低上游CDMO企业的成本,还能使终端产品价格降低,提升病人用药的可 及性。AAV基因治疗产品高昂成本的降低可以从优化培养体系、提高质粒转染效率、 提升下游回收工艺和构建通用的AAV纯化平台等方面入手,注重布局以上工艺体系 的细胞与基因治疗CDMO企业,必将在行业中占据优势地位。

  2. 慢病毒载体的纯化是生产工艺中的最大瓶颈

  慢病毒载体能整合进宿主细胞基因组和不具有组织特异性的特点,使慢病毒载体被 广泛用于体外细胞基因治疗中。CAR-T、UCAR-T、CAR-NK和干细胞产品主要使用 慢病毒载体。目前常用的第三代慢病毒载体系统由四质粒构成,其中三个质粒为标 准化的质粒,另一个包含目的基因的载体质粒为个性化的质粒,同AAV一样,质粒 也是慢病毒载体生产的一个重要成本来源。第三代载体系统增加了两个安全特性, 一是构建自失活的慢病毒载体,二是用异源启动子序列代替Tat基因,更加安全。

  悬浮无血清培养逐渐替代贴壁培养体系:慢病毒的悬浮无血清培养已逐步替代传统 的贴壁培养模式,慢病毒贴壁培养的制备需要使用大量进口血清,而这