发布时间:2020-03-24 16:24 原文链接: 科研人员发现蓝细菌适应高盐逆境深层机制

  蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖等小分子化合物来抵抗逆境,然而,相关调控机制仍未被清楚揭示。

  中国科学院青岛生物能源与过程研究所微生物代谢工程研究组长期以来致力于蓝细菌逆境适应性研究,其近期研究结果揭示了蓝细菌在应对盐胁迫、合成蔗糖方面的深层机制。通过系统分析聚球藻PCC 7942蔗糖合成关键因子响应高盐胁迫的变化情况,研究人员发现蓝细菌蔗糖代谢调控发生在基因转录、蛋白翻译、酶学活性三个水平,并通过一种“离子浓度介导的酶活协同调控”方式,实现胞内蔗糖生理代谢对环境盐度变化的快速响应(如图)。相关研究成果近日发表在Applied and Environmental Microbiology杂志。

  在非盐胁迫条件下,蓝细菌在胞内基础性表达蔗糖合成关键酶SPS(sucrose phosphate synthase);而当细胞遭遇高盐逆境时,胞内离子浓度迅速升高,SPS酶活性被迅速激活,细胞开始快速合成并积累蔗糖,以维持细胞内外的渗透平衡;而当环境盐度降低后,胞内离子浓度降低,SPS重新恢复到低活性状态,蔗糖合成也随之减弱。有趣的是,负责蔗糖降解代谢的关键酶INV(invertase),其酶活调控方式与SPS正好相反,即高离子浓度抑制其活性,低离子浓度促进其活性。这样,蓝细菌细胞内动态变化的离子浓度以完全相反的方式调控着蔗糖合成和降解的关键酶,从而实现对环境盐度变化的动态响应。

  高盐环境对细胞的生理胁迫是一个快速的过程,为了响应并适应高盐环境,细胞也必须对逆境做出快速响应。该研究揭示的“离子浓度介导的酶活协同调控”保证了蓝细菌能以一种极为快速的方式实现细胞生理、生化响应,因此很可能是微生物界普遍采用的一种高盐适应调控机制。

  上述研究获得国家杰出青年科学基金、国家自然科学基金面上项目等支持。

  图:聚球藻PCC 7942应对高盐胁迫、合成蔗糖的调控机制

相关文章

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

海滩岩胶结作用研究获进展

近日,中国科学院南海海洋研究所边缘海与大洋地质重点实验室助理研究员张喜洋、副研究员杨红强与中国科学院南京地质古生物研究所等合作者在海滩岩微生物介导的胶结作用取得新认识。相关研究发表于《古地理学,古气候......

蓝细菌中发现新型脂肪类生物聚合物

微藻作为地球上最古老的生物之一,可以为甲烷、生物氢、生物柴油等多种不同类型的可再生生物燃料提供原材料。近日,中科院广州地球化学研究所有机地球化学国家重点实验室、深地科学卓越创新中心博士研究生孔祥兰和研......

最新研究揭示蓝细菌受光/暗调控的蛋白质降解

光对于光合生物(包括高等植物和蓝细菌)是必需的,并参与调控蛋白质的合成与降解。光调控的蛋白质降解是光合生物中蛋白质质量控制的重要机制,其中最典型、研究最深入的是光系统II反应中心D1蛋白,其光诱导的降......

研究揭示蓝细菌中赖氨酸甲基转移酶的作用机制

蛋白质翻译后修饰通过在一个或几个氨基酸残基上加上化学修饰基团而改变蛋白质的结构和功能,参与蛋白质的活性状态、定位、折叠以及蛋白质-蛋白质间相互作用。赖氨酸甲基化是常见的蛋白质翻译后修饰类型之一,其调控......

一文详解蓝细菌

旧名为蓝藻(bluealgae)或蓝绿藻(blue—greenalgae),是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细......

科研人员发现蓝细菌适应高盐逆境深层机制

蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖等小分子化合物来抵抗逆境,......

蓝细菌合成生物学研究进展

光合生物制造技术是指以光合生物为平台,将太阳能和二氧化碳直接转化为生物燃料和生物基化学品的技术,可以在单一平台、单一过程中同时取得固碳减排和绿色生产的效果。蓝细菌是极具潜力的光合微生物平台,相比较于高......

固氮基因研究获突破能让植物自行合成氮肥

  美国圣路易斯华盛顿大学日前发布新闻公报说,该校研究人员通过移植固氮基因,成功使一种光合作用细菌获得了从空气中吸收氮的能力。这将有助于研究植物固氮技术,培育不需要施氮肥的农作物。......