发布时间:2016-06-12 09:42 原文链接: 科学家成功把二氧化碳变成“石头”封存

  在全球变暖背景下,怎样处理不断增长的二氧化碳排放是一个世界性难题。一个国际科研小组9日在美国《科学》杂志上报告说,他们把二氧化碳注入地下玄武岩层,并借助自然化学反应将二氧化碳转化为固态碳酸盐。

  长期以来,碳捕捉与封存技术被视为应对全球变暖的一种重要方案,即从工业生产或燃烧化石燃料所产生的气体中分离出二氧化碳,然后注入一定深度的地下岩层中封存。通常选择的封存地点是废弃油气田等,但一些专家担心,这些气体将来还会泄漏回地面,技术安全性有待验证。

  为此,美国和欧盟的一些机构从2012年开始在冰岛实施名为“碳固定”的试点项目。冰岛有多座活火山,火山喷发形成的玄武岩广泛存在于地下,这种岩石的钙、镁、铁含量高,可与二氧化碳发生化学反应,生成固态的碳酸盐矿物质。

  这个项目由美国哥伦比亚大学、冰岛大学、冰岛雷克雅未克能源公司、英国南安普敦大学等机构联合实施,研究人员先把此前收取的二氧化碳与水混合,然后注入地下400米至800米深处的玄武岩层中。一些专家原以为相关化学反应需经过数百年乃至数万年才能完成,但最新研究显示,这一化学反应的速度比此前预测要快得多。

  “我们的研究结果显示,所注入的二氧化碳含量的95%至98%在不到两年内便发生了钙化(即转化为固态碳酸盐),”论文第一作者、南安普敦大学地质工程学副教授于尔格·马特在一份声明中说,“这个速度非常令人吃惊。”

  马特说,固态碳酸盐矿物质没有泄漏风险,因而这种方式可以永久且对环境无害地封存二氧化碳。玄武岩是地球上最常见的岩石类型之一,在世界许多地方的大陆边缘地带广泛存在,因此有潜力用于大量封存二氧化碳。

  但专家也表示,用上述方法将二氧化碳注入玄武岩层之前,需先把二氧化碳与水混合,因而所需用水量非常大,封存1吨二氧化碳需要大约25吨水。未来可以探索使用海水来解决这个问题。

  “碳固定”是一个小型试点项目,目前冰岛雷克雅未克能源公司正在开展更大规模的试验,把从一个地热发电厂每年捕捉的近5000吨二氧化碳封存到地下。研究人员认为,这种新型固碳技术将会提高公众对碳捕捉与封存技术的接受度。

相关文章

高效光热协同催化剂被开发,实现空气中二氧化碳的捕获和转化

近日,哈尔滨工业大学化工与化学学院李英宣课题组开发出高效光-热协同催化剂,实现空气中二氧化碳的捕获和转化,研究成果以《在铂负载镍基金属有机框架上运用双活性位点协同作用实现热辅助红外光催化转化大气中的二......

科普华东理工在线质谱仪在工业发酵过程优化与放大中的应用

1、引言生物药物、食品等工业发酵过程中,尾气氧及尾气二氧化碳的测定对了解发酵过程的宏观生理代谢特性非常重要。通过对尾气氧和二氧化碳的测定,可在线计算出细胞重要生理代谢特征参数氧消耗速率(OUR)二氧化......

升温1.5℃窗口期或将在2030年前结束

伦敦帝国理工学院研究人员领导的一项研究表明,如果不迅速减少二氧化碳排放,到2030年,全球气温上升1.5℃的可能性有50%。这项30日发表在《自然·气候变化》上的研究,是对全球碳预算的最新、最全面的分......

挑战低重力,德国科学家竟然要在月球铺路

德国科学家研究表明,使用激光融化月壤造出更坚硬的层状物质,有可能在月球上创造铺面道路和着陆坪。尽管这些实验是在地球上使用月尘替代物进行的,但这些发现展示了技术的可行性,表明其可在月球上复现。相关研究1......

聚焦“双碳”战略,引领绿色变革

日前,我国迎来碳达峰碳中和重大宣示三周年。2020年9月22日,习近平总书记在第75届联合国大会一般性辩论上宣布,中国二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。3年来,我......

木卫二表面二氧化碳来自其海洋

美国两个科研团队分别在最新一期《科学》杂志上撰文指出,詹姆斯·韦布空间望远镜提供的数据显示,在木卫二(欧罗巴)上检测到的二氧化碳来自其冰冷外壳下的海洋,这让人们对其海洋中可能潜伏着生命更添期待。科学家......

事关二氧化碳排放量!清华大学最新Nature

2019年,高能耗的钢铁工业贡献了全球工业二氧化碳排放量的约25%,其对减缓气候变化至关重要。尽管在国家和全球两级讨论了脱碳潜力,但特定于工厂的缓解潜力和技术驱动的途径仍不清楚,这累积起来决定了全球钢......

兰州化物所多相热催化二氧化碳加氢转化获进展

二氧化碳是主要的温室气体,也是廉价易得的C1资源。利用清洁能源产生的绿氢将二氧化碳加氢转化为高附加值化学品是二氧化碳可持续化学转化和资源化利用的重要途径之一,对实现“双碳”战略目标具有重要意义。近日,......

金属有机框架材料可提高光合作用固碳效率

在自然光合作用中,植物利用太阳光、水、二氧化碳合成生物质。但是,植物的光合作用效率主要受到光照质量和二氧化碳捕集与传输方面因素的限制,制约了光合作用合成生物质的效率。近日,中国科学院大连化学物理研究所......

硫化氢二氧化碳高选择性制合成气和硫磺新技术通过成果评价

近日,由中国科学院山西煤炭化学研究所和国能包头煤化工有限责任公司共同开发的硫化氢-二氧化碳混合酸气高选择性制合成气和硫磺新技术通过了由中国石油和化学工业联合会组织的科技成果评价。经质询和讨论,评价委员......