发布时间:2016-06-27 16:41 原文链接: 数千光年外的手性分子,或将解锁生命起源之谜

  在全球最精密的望远镜的帮助下,两名天文学家在数千光年外一片正在形成恒星的星云中发现了一种新型有机分子。这项史无前例的发现可能会帮助揭开地球上生命起源的神秘面纱。

  这种新发现的有机分子是环氧丙烷(CH3CHOCH2),它具有手性——也就是说它有左手性和右手性两种构型,两种构型互为镜面对称,它们具有完全相同的物理性质。对于上过生物学入门的人而言,手性分子并不是一个陌生的概念,它们是构成DNA和蛋白质的基础。但奇怪的是,生物体内的手性分子都是单一手性的,或“左”或“右”,从来没有同时存在过。

  地球生命的这种“单手性”现象是如何出现的?这一直是一个谜。不过现在,在太阳系外第一次发现的手性分子可能会给这个问题一个答案。

  “对于生命体来说,手性是非常重要的,”这项研究(发表于6月14日的Science)的第一作者之一Brandon Carroll说,“地球上所有氨基酸都是左手性的,它们可以组合形成众多体量庞大且功能多样的蛋白质分子,而DNA之所以能形成双螺旋结构,也完全依赖于它的骨架全都由右手性的脱氧核糖构成。”

  “单手性”(homochirality)的生物学优势是显而易见的,但对于这种特殊性质是如何产生的,以及为什么同种分子只存在单一手性,我们还知之甚少。鉴于构成生命体的简单碳氢氧链可能来源于外太空,那么研究地外的手性分子便是窥视地球过去的一种新方法。

  目前为止,天体生物学家已经在陨石中和彗星表面发现了手性分子。“从陨石中发现的左手性氨基酸比右手性氨基酸略多,这让我们将太空中与地球生命中的手性分子联系了起来,”Carroll说,“如果你想知道多出来的左手性氨基酸从何而来,研究星云将是第一步。”

  “如果你在其他星球吃了一个由与地球上手性相反的分子组成的奶酪汉堡,你可能会中毒,也可能只是消化不良,总之,它和我们的身体不兼容。”

  这就是Carroll和这篇论文的共同作者Brett McGuire近几年在做的事情,他们把研究重点放在Sagittarius B2上,这是一片距银河系中心28000光年,质量为太阳250000倍的星云。从某种意义上说,SagB2是天体生物学家追求的“圣杯”,因为天文学家此前发现的所有星际分子中,大多数都能在这个星云的悬臂和尘埃中找到。“这是已知宇宙中发现分子的最好地点。”McGuire说。

  得益于美国国家射电天文台近几年收集的SagB2星云的无线电数据,Carroll和McGuire开始寻找环氧丙烷这种小而简单的手性分子。通过将澳大利亚帕克斯射电望远镜收集的光谱与数据库中的进行比对,他们证实了环氧丙烷分子的存在。

  “如果把已发现的所有环氧丙烷分子的质量相加,大概相当于五分之四个地球。”Carroll补充说,这虽然听起来很多,但和SagB2星云的大小相比实为沧海一粟,而且这已经是设备目前能够检测的极限。更大且更复杂的手性分子更少,并且更难被发现。

  但我们也没必要在宇宙中寻找更大、更复杂的手性分子。“即使我们不能探测到其他手性分子的存在,如果可以检测出某种手性的环氧丙烷比另一种手性多,对我们理解手性单一化的进程也是至关重要的。”Carroll说。

  或许星际尘埃中产生有机分子的方式就影响了生命形成的过程,使生物分子偏向某一种手性模式;也许左手性的蛋白质和右手性的遗传物质是整个宇宙中所有生命所共有的基本特性,但也有可能地球生命产生的过程更多地受到地球本身的影响,或者地球的生命选择了这一种手性只是随机结果。

  为了区分每种假设的可能性,McGuire和Carroll开始着手测量他们所观测到的环氧丙烷的手性。“即便现有技术是可以实现的,观测也将花费许多时间和精力。”McGuire说。在实验室,化学家们一直运用偏振光来确定有机分子的手性,不过目前为止还没有人将其应用在天文学领域。

  但这项挑战是值得的,不仅因为它可以帮助了解我们的过去,也因为它可以影响我们的未来。如果我们发现了宇宙中的其他生命,它们产生并演化的蓝图和我们是相同还是不同?或者说,它们会与我们在生物学上“兼容”么?

  这些问题是科幻作家津津乐道多年的,而问题的答案关乎我们能否较为容易地在其他星球上生存下来。就像Carroll所说:“如果你在其他星球吃了一个由与地球上手性相反的分子组成的奶酪汉堡,你可能会中毒,或者只是消化不良,但总之,它和我们的身体不兼容。”

  “手性单一化是很实用的工具,所以我们可以很自然地设想任何生命都会善加利用它,”McGuire说,“通过研究这些天体物理过程,我们或许最终可以仔细观测一颗恒星,并揭示它周围行星上的生命是由哪种手性构成的,以及为什么。”

  想象一下,在未来这样的研究或许能够告诉我们哪些行星系统适合居住,哪些行星上只有难以消化的午餐肉,你也会觉得这是很靠谱的投资吧!

相关文章

金属表面有机分子对称性破缺诱导选择性功能化研究突破

近年来,将第一性原理计算与扫描隧道显微镜(STM)和原子力显微镜(AFM)实验相结合已成为在原子、分子层次研究表面物理和化学过程的强有力手段,在实现小分子甚至单原子级别的操纵和表面化学反应的基础上,可......

环氧丙烷市场缘何平淡

今年以来,国内环氧丙烷市场整体平稳,价格基本在12000元/吨左右震荡,出现旺季不旺、淡季不淡的局面。环氧丙烷市场缘何难见起色?一是整体供应平稳。据统计,目前国内环氧丙烷有效产能317万吨/年。到目前......

新型“分手”利器可高效分离手性分子

生物分子COF1作为手性固定相用于手性拆分(南开大学供图)化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。一些药物中的手性分子在生......

周其林院士就“手性分子合成”发表主旨演讲

揽镜自照,镜中人跟随我们的一颦一笑;双手相合,左右手彼此互为镜像。但看似相同的两个事物,却无论如何旋转都不会重叠。手性现象在自然界广泛存在,大到宇宙星云,小到日常的螺壳。在微观世界里,有一大类分子存在......

数千光年外的手性分子,或将解锁生命起源之谜

在全球最精密的望远镜的帮助下,两名天文学家在数千光年外一片正在形成恒星的星云中发现了一种新型有机分子。这项史无前例的发现可能会帮助揭开地球上生命起源的神秘面纱。这种新发现的有机分子是环氧丙烷(CH3C......

数千光年外的手性分子,或将解锁生命起源之谜

在全球最精密的望远镜的帮助下,两名天文学家在数千光年外一片正在形成恒星的星云中发现了一种新型有机分子。这项史无前例的发现可能会帮助揭开地球上生命起源的神秘面纱。这种新发现的有机分子是环氧丙烷(CH3C......

数千光年外的手性分子,或将解锁生命起源之谜

在全球最精密的望远镜的帮助下,两名天文学家在数千光年外一片正在形成恒星的星云中发现了一种新型有机分子。这项史无前例的发现可能会帮助揭开地球上生命起源的神秘面纱。这种新发现的有机分子是环氧丙烷(CH3C......

太阳系外首次发现手性分子

美国研究人员14日报告说,他们在太阳系外的星际空间中首次发现一种被称为“手性分子”的有机分子,这将有助于破解手性分子乃至生命在宇宙中的最初起源之谜。当两种化合物的分子结构像人的左右手一样呈镜像对称但又......

化学所用外消旋分子组装手性结构识别与检测手性分子

手性分子与手性结构广泛存在于自然界中,手性分子的合成与拆分,手性分子识别以及手性结构的形成与功能化是分子化学、超分子化学的重要课题之一。在国家自然科学基金委和科技部的大力支持下,中国科学院化学研究所胶......

成都生物所新型手性配体的设计与手性反转控制研究获进展

反应过程通过不对称催化获取高光学纯度手性化合物一直是有机化学的热点研究领域之一。一般而言,要获得构型相反的手性分子,需使用构型相反的手性催化剂,从单一手性源出发设计不同的配体来实现这一目标,则极具挑战......