10月3日,《自然》(NATURE)期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于三聚态胞内阳离子通道(TRimeric Intracellular Cation channel, TRIC channel)的结构与门控机制研究成果。

  钙离子在生物体和细胞的生理活动过程中发挥重要的作用,作为信使参与细胞信号传递过程,也是骨质的重要组成成分。细胞内钙离子信号及其浓度的调控对肌肉收缩、神经递质释放、细胞生长和凋亡等生理过程至关重要。肌质网或内质网(SR/ER)腔内所贮存的钙离子主要通过兰尼碱受体(ryanodine receptor, RyR)或三磷酸肌醇受体(IP3R)通道来释放,该过程的调控需要得到SR/ER膜上的一系列其它离子通道的支持。快速释放的钙离子会在SR/ER管腔内产生局部负电位,导致跨膜电位的失衡,进而阻碍钙离子的有效释放。因此,对于细胞内钙信号的调控不仅需要RyR和IP3R通道来释放钙离子,还需要其它SR/ER离子通道来为其提供反向电流以恢复SR/ER膜电位的平衡和维持腔内离子的稳态。近年来,TRIC通道被发现是一种位于SR/ER膜上的单价阳离子通道,它们主要通过通透钾离子或钠离子来促进SR/ER腔内的钙离子向胞浆释放。编码TRIC通道蛋白的基因遗传缺失或突变会导致高血压、心脏病、呼吸缺陷和脆骨病。脆骨病也称成骨不全症,患者先天骨质脆弱易折,统计数据显示该病在人群中的发生率约为1/20,000。TRIC通道家族包含A型和B型两个亚型,其中B亚型的TRIC-B与呼吸缺陷和脆骨病的发生有关。

  近年来,科学家们围绕TRIC通道的生理功能、分子遗传学和电生理特征等方面开展了一系列的研究,而其分子水平的三维结构与门控机制多年来一直是个谜。柳振峰课题组率先解析了秀丽线虫(Caenorhabditis elegans)来源的TRIC-B(CeTRIC-B)通道的两个不同构象态的晶体结构。此次所报道的研究工作中首次发现了TRIC-B通道蛋白能够特异性地结合内源性的磷脂酰肌醇4,5-二磷酸(PIP2)脂类分子,并形成了稳定的同源三聚体复合物(如下图所示)。每个单体中各含有一个可通透K+离子等单价阳离子的不对称孔道,其结构特征与经典的四聚态K+离子通道截然不同。内源性的PIP2分子介导了TRIC通道的三聚化,同时直接参与孔道结构的形成,并与推测的电压感应基序以及钙离子结合区有相互作用。这一发现揭示了PIP2分子在胞内离子通道中所起的关键作用,也拓展了人们对于PIP2与离子通道相互作用关系的认识。胞质侧的钙离子对于TRIC通道的活化有促进作用,研究结果发现TRIC-B通道在结合钙离子前后发生了局部结构的变化,并基于此提出了该通道活化过程的机理模型,对其开放时的门控机制做出了预测。

  新型胞内离子通道是潜在的药物作用靶点,相关研究有望促进新药的开发,该领域的研究工作近年来开始引人关注。此次所完成的TRIC通道结构机理方面的研究结果,将为深入开展与胞内钙信号动态调控有关的生理过程、病理以及药理的分子基础研究提供全新的视角。该项研究得到了科技部“973”计划、中科院战略性先导科技专项的资助以及中科院“135”计划项目的经费支持。课题负责人和论文通讯作者柳振峰为中组部“青年千人计划”的首批入选者。柳振峰课题组的博士研究生杨涵婷和胡苗会为该论文的共同第一作者;助理研究员郭建立和欧晓敏分别参与了电生理数据的收集和分析工作;生物物理所杨福全课题组博士蔡潭溪合作参与了脂类样品的质谱鉴定工作。生物物理所孙坚原课题组为该项研究提供了单通道电生理研究设备的支持。晶体衍射数据收集于上海光源(BL17U线站)和日本筑波光子工厂(BL1A、BL5A和NW12A线站)。

相关文章

我国钙离子光频标测量结果成为国际秒定义“候选者”

近日,记者从中国科学院精密测量科学与技术创新研究院(以下简称精密测量院)获悉,国际计量局网站日前更新了国际秒定义候选跃迁频率的推荐值,精密测量院研究员高克林团队研发的钙离子光频标所测得的跃迁频率首次入......

精密测量院钙离子光频标跃迁频率进入国际次级秒定义

4月14日,国际计量局网站更新了次级秒定义的候选光频标,钙离子光频标首次入选。2021年3月19日,国际计量局时间频率咨询委员会第四次采纳了中国科学院精密测量科学与技术创新研究院高克林研究团队研发的钙......

我国成功研制105亿年偏差不到1秒的光频标

中国科学院精密测量科学与技术创新研究院高克林研究团队成功研制105亿年偏差不到1秒的钙离子光频标。相关研究成果近日已发表于国际学术期刊《应用物理评论》。记者14日从中国科学院精密测量科学与技术创新研究......

我国成功研制105亿年偏差不到1秒的光频标

中国科学院精密测量科学与技术创新研究院高克林研究团队成功研制105亿年偏差不到1秒的钙离子光频标。相关研究成果近日已发表于国际学术期刊《应用物理评论》。记者14日从中国科学院精密测量科学与技术创新研究......

植物细胞内一类免疫受体作为钙离子通道调控免疫

2021年6月17日,美国北卡大学JeffDangl实验室、中科院分子植物科学卓越创新中心万里研究组和美国杜克大学裴真明实验室合作在Science发表了题为Plant“helper”immunerec......

我国研发出24亿年不差一秒的车载光频标

 中国科学院精密测量科学与技术创新研究院成功研发24亿年不差一秒的车载光频标。该院高克林研究员团队经过10多年努力,突破一系列关键技术,研制出24亿年不差一秒的超高精度车载光频标。该车载光频......

连发4篇顶刊——颜宁团队系统介绍钙离子通道蛋白调控机制

作为从心肌的肌浆网(内质网)释放Ca2+的开关,2型ryanodine受体(RyR2)受到多种调节剂的复杂调节。RyR2介导的Ca2+释放失调与威胁生命的心律不齐有关。关键调节剂,例如Ca2+,FKB......

钙离子通道CNGC20参与植物细胞凋亡的调控!

植物在调控自身生长,发育以及对外界环境防御的过程中已经进化出数百种受体激酶。虽然有许多受体激酶已经得到了很好的研究,例如FLS2,BR1和BIK1。但是随着技术手段的发展以及研究人员对不同受体激酶认知......

钙离子通道抑制剂能治疗发热伴血小板减少综合征

近日,中国科学院武汉病毒研究所/生物安全大科学研究中心彭珂研究组与肖庚富研究组联合军事科学院刘玮研究团队在国际学术期刊CellResearch(《细胞研究》)在线发表题为Calciumchannelb......

中国航天员科训中心失重性骨丢失分子机制研究进展

失重性骨丢失是航天员长期在轨飞行所面临的关键医学问题。2019年4月8日,国际权威期刊NatureCommunications(自然通讯)以“TMCO1-mediatedCa2+leakunderli......