发布时间:2018-01-10 17:03 原文链接: MolecularPlant:生物钟调控叶片衰老新机制

  生物钟是生物体为适应环境昼夜周期变化而进化出的协调细胞内基因表达、代谢网络调控的分子系统,调控植物的新陈代谢、生长发育等多个过程。生物钟使植物的内源节律与外部昼夜变化的光和温度等环境条件相协调,为植物的生长发育提供竞争性优势。叶片衰老过程能将营养和能量从衰老的叶片向正在发育的组织和器官转移,以便更好地适应环境胁迫,但生物钟是否参与调控叶片衰老过程尚不清楚。

  中国科学院植物研究所王雷研究组发现,当拟南芥生物钟核心组分Evening Complex中任何组分发生突变,叶片衰老均会提前。转录组分析及茉莉酸诱导叶片衰老的生理实验表明,Evening Complex直接参与调控茉莉酸信号,而茉莉酸信号是调节植物叶片衰老的重要因子之一,其中MYC2是茉莉酸信号促进叶片衰老的关键转录因子。进一步研究发现,Evening Complex直接结合该基因启动子并抑制其表达,从而在时间维度精细调控茉莉酸诱导植物叶片衰老的进程。

相关文章

版纳植物园揭秘鹰嘴豆叶片分子机制

近日,中国科学院西双版纳热带植物园热带植物资源可持续利用重点实验室陈江华研究组首次以鹰嘴豆为研究对象,解析了豆科植物中羽状复叶的小叶原基时空起始模式调控的分子机制。相关研究发表于《自然-通讯》。叶片是......

微自噬机制对预防衰老至关重要

据最新发表在《EMBO报告》上的一项研究报道,日本大阪大学和奈良县立医科大学的研究人员首次证明,受损的溶酶体可通过微自噬机制修复,并确定了这一过程的两个关键调控因素,这对于预防衰老至关重要。为确定新的......

研究揭示逆转心脏衰老的关键蛋白

中国科学院动物研究所刘光慧课题组、曲静课题组,联合北京基因组研究所张维绮课题组,在《自然-衰老》(NatureAging)上,在线发表了题为SIRT2counteractsprimatecardiac......

Nature子刊:研究揭示逆转心脏衰老的关键蛋白

衰老是心血管疾病的首要危险因素,可导致心脏结构异常和功能衰退,如室壁肥厚、舒张功能障碍、纤维性颤动等。这些与年龄相关的心脏变化会增加多种心脏疾病的患病率,进而影响人类健康和寿命。随着全球人口老龄化形势......

JLipidRes:揭示机体生物钟控制脂肪代谢的分子机制

在果蝇机体中,生物钟(昼夜节律钟,circadianclocks)也控制着机体的脂肪代谢,近日,一篇发表在国际杂志JournalofLipidResearch上题为“Thecircadianclock......

对衰老SayNo!

心脏是人体最重要的器官之一,其主要任务是将氧和养分通过血液泵送到全身,确保我们的生命活动正常运转。然而,随着年龄的增长,心脏也开始经历衰老的过程,其中一个显著的问题是心律失常。为什么衰老的心脏常常失去......

研究揭示早期预防骨骼肌衰老的新路径

近日,广东省科学院微生物研究所研究员谢黎炜团队与中国工程院院士、中国科学院亚热带农业生态研究所首席研究员印遇龙团队合作,首次报道了抗生素诱导的肠道菌群紊乱和衰老个体的肠道菌群及其代谢物会扰乱肌卫星细胞......

科学家揭开加速机体脂肪组织衰老的新型机制

脂肪组织在控制机体代谢稳态中发挥着核心作用,而机体中脂肪组织保存的失败与年龄相关的代谢性障碍直接相关,成熟脂肪组织在这种现象中所扮演的关键角色,目前研究人员并不清楚。近日,一篇发表在国际杂志Natur......

研究揭示蛋白质氧化折叠在干细胞衰老中的作用

长期以来,人们普遍认为线粒体是细胞活性氧的主要来源。然而,内质网中蛋白质二硫键形成过程会产生副产物H2O2。据估算,它约占蛋白质合成过程中产生总活性氧的25%。可见,内质网来源的活性氧不容忽视。8月3......

新研究显示一组重要致癌基因可能与衰老相关

美国一项新研究发现,重要的致癌基因Myc可能与机体衰老过程有关,缺乏该基因的小鼠衰老更快,但癌症发病率更低、寿命更长。Myc是一组发现较早、研究较多的致癌基因,它们编码的蛋白质参与细胞生长和凋亡的多个......