发布时间:2018-11-23 10:58 原文链接: 罗敏敏/龚辉合作组开发神经元稀疏标记方法

  脑连接图谱研究是神经生物学主要的研究课题之一。以往研究主要注重于描绘大脑中的不同脑区之间以及不同位置神经元类群之间的连接。虽然这些脑连接图谱揭示了神经系统的基本结构,但由于缺乏单细胞精度,脑区水平或神经元类群水平的连接图谱并不能准确反映神经系统的精细结构。目前,有两个因素限制了单神经元连接谱的研究进展:一方面,为了清晰分辨单神经元的结构,需要对神经元进行稀疏高亮标记;另一方面,需要高精度高通量的成像系统来获得全脑成像,并需要特殊图像处理技术进行神经元重构。

  2018 年11月19日,北京生命科学研究所罗敏敏实验室与华中科技大学龚辉教授实验室合作在Nature Methods杂志上在线发表题为Cell type -and Projection-specific Brain-wide Reconstruction of Single Neurons的文章。该研究开发了一套基于腺相关病毒(AAV)载体的稀疏高亮标记方法,并利用此方法实现了全脑范围单神经元完整重构,以及透明化脑片的中间神经元重构。

  针对单神经元清晰分辨的问题,罗敏敏实验室开发了一种基于AAV的表达系统,可以稀疏、高亮地标记特定类型的神经元。这一标记系统由两个AAV载体两组成:1)控制子(Controller),由TRE启动子与Cre依赖的转录模块组成。Cre依赖的转录模块中包含3’-5’反向的FLPo编码序列;2)放大子(Amplifier),由TRE启动子和FLP依赖的转录模块组成。FLP依赖的转录模块中包含3’-5’反向的GFP-IRES-tTA编码序列(图1左)。

图片.png

图一 稀疏标记系统工作原理

  这两个病毒需混合后进行脑内注射。混合病毒侵染神经元后,若神经元内无Cre表达,则标记不发生。当病毒感染Cre阳性神经元后,控制子中的Cre依赖的转录元件会被翻转。由于此时神经元内没有tTA表达,TRE启动子转录活性低。在大多数被病毒侵染的Cre阳性神经元中FLPo表达量极低,无法触发放大子中FLP依赖的转录模块的翻转。随机的,在某些Cre阳性神经元中,FLPo表达量达到一定的水平,触发放大子中FLP依赖的转录模块的翻转。由于放大子同样使用TRE启动子,转录活性低,只有少量的GFP和tTA表达。此时,在极少量细胞内tTA的表达量达到一定水平,足以结合TRE启动子并启动其后基因的转录,正反馈回路被触发:细胞表达更多的FLPo对剩余的放大子组件进行翻转,并使更多的GFP和tTA被表达出来,标记强度得到增强(图1右)。

  该系统的设计有两个优点:1)由于标记的触发依赖于Cre,通过将该稀疏标记系统与Cre转基因小鼠联用,能够实现细胞类型特异性的稀疏标记;2)通过调整控制子和放大子的混合比例,能够控制标记的稀疏程度。

  基于这一标记系统,罗敏敏课题组与华中科技大学国家光电研究中心fMOST课题组合作,建立了“稀疏标记-样本包埋-fMOST成像-神经元重构-数据校准-量化分析”的流水线,实现了稳定高通量的全脑成像和图像分析。借助这一流水线,研究人员在DAT-Cre小鼠中重构了15个中脑多巴胺神经元的完整形态。通过单细胞形态学分析,研究人员能够将重构的多巴胺神经元分为两类:一类多巴胺神经元只有单个投射目标,轴突在终点处会形成密集的末端树状分支(图二左);另一类投射轴突分布比较广泛,会有多个旁分支投向不同目标,少有末端树状分支(图二右)。

图片.png

图二 15个多巴胺神经元的全脑投射形态重构

  研究人员利用不同血清型的AAV病毒,进一步拓展了稀疏标记系统,实现了投射特异性的神经元稀疏标记。利用此方法并结合fMOST成像,研究人员成功对皮层-纹状体投射神经元进行特异性标记和完整重构(图三)。

图片.png

图三 投射特异性标记策略实现皮层-纹状体PT/IT神经元完整形态重构

  组织透明化是近期成像领域屡有突破的技术。研究人员将稀疏标记系统与组织透明结合,在PV-Cre和SOM-ires-Cre小鼠中特异性的标记了两类中间神经元,制成脑片后用uDISCO方法进行透明化处理。随后在共聚焦显微镜下成像,并对对神经元进行了重构。通过此方法,研究人员实现了中间神经元的快速重构,并且可以高效地对神经元树突的分支特征进行量化分析(图四)。

图片.png

图四 稀疏标记策略与组织透明结合,实现中间神经元重构

  该稀疏标记系统的另一大优点是可拓展性高。最初版本的稀疏标记系统中,研究人员利用了Cre和FLP这一对重组酶。通过引入新的重组酶,理论上可以构建与Cre/FLP版本相正交的新版本稀疏标记系统,以实现在同一样本内对不同种类神经元的多色标记。为了验证此策略,研究人员引入了DreO和vCre这一对新的重组酶,构建了DreO/vCre版本的稀疏标记系统(图五左)。利用Cre/FLP和DreO/vCre两个版本的稀疏标记系统,研究人员成功实现在同一鼠脑内对两群神经元进行双色稀疏标记(图五右)。

图片.png

图五 引入正交重组酶实现多色稀疏标记

  相比于现有的稀疏标记方法,罗敏敏课题组开发的这一稀疏标记策略具有易使用、易拓展、效率高的特点。除了文章中展示的分子特异性或投射特异性标记,理论上该系统也可以与光遗传学分子、分子探针、CRISPR/Cas9元件等联用,用于单细胞水平功能性研究。这一技术的开发将有助于将脑连接谱研究推向单细胞精度,并有希望帮助研究人员在单细胞精度下对正常及病理状态的神经元进行研究。

  据悉,罗敏敏实验室林睿博士、PTN项目博士生王睿宇以及华中科技大学国家光电研究中心袁菁博士为本文的共同第一作者,其他作者包括罗敏敏实验室冯琦茹、周宥彤,华中科技大学国家光电研究中心曾绍群博士、任淼博士、博士生蒋思齐、倪鸿、周灿。罗敏敏博士及华中科技大学龚辉教授为本文共同通讯作者。


相关文章

远古海洋动物“讲述”神经元起源的故事

扁形动物只有差不多一粒沙那么大,以一些浅海岩石表面的藻类和微生物为食。它简单到没有任何身体部位或器官。然而,西班牙巴塞罗那基因组调控中心研究人员在最新一期《细胞》杂志上发表论文称,在这些独特而古老的海......

我国科学家发现脓毒症引起认知障碍的新机制

脓毒症脑病是指非中枢神经系统感染的脓毒症引起的弥漫性脑功能障碍,是脓毒症最严重的并发症之一,特征表现为认知功能和意识状态的改变,包括注意力下降、昏睡、谵妄和情绪异常等。既往研究发现,单胺类神经递质紊乱......

一种电子神经植入物可记录神经元活动

据发表在最新一期《科学》杂志上的一项研究,一种通过血管输送的超小型、超柔韧的电子神经植入物可记录大鼠大脑深处的单个神经元活动。这项技术可作为与大脑深部区域的长期、微创生物电子接口。脑机接口(BMI)可......

一种全新的非侵入性人工冬眠技术

冬眠是一种特殊的生理状态和生存策略。在冬眠状态中,哺乳动物如熊和一些啮齿类动物通过抑制新陈代谢、降低体温和减缓其他生理过程以节约能量,来应对致命的环境压力。最新研究发现,冬眠状态受大脑控制,而大脑则充......

睡眠对记忆建立和突触可塑性的重要意义

人类以及果蝇、海兔等生物都需要睡眠来巩固记忆。关于睡眠是否改变特定神经元之间的突触从而巩固记忆和影响行为,是生物学领域重要且具挑战性的问题之一。秀丽隐杆线虫只有302个神经元,其大多数神经元的特征和功......

大脑视交叉上核神经元的初级纤毛调控机体节律

生物钟的准确性和稳定性与健康息息相关。节律如果发生异常,可引发睡眠障碍、代谢紊乱、免疫力下降,严重时可导致肿瘤、糖尿病、精神异常等重大疾病的发生。大脑的视交叉上核(SCN)是生物钟的指挥中枢,协调外周......

猕猴大脑皮层单细胞空间分布图谱发布

由860亿个神经元组成的人类大脑,就像一座结构精巧的迷宫。为了绘制出这座迷宫的地图,脑科学家们将目光聚焦在猕猴——这种与人类最接近的灵长类模式动物上,它的大脑包含超过60亿个神经元。7月12日23时,......

研究人员发现神经元能够冷却脂肪组织中的炎症

正如食物中存在不同类型的脂肪一样,体内也存在不同类型的脂肪组织。白色脂肪组织(WAT)是最丰富的脂肪形式,而棕色脂肪组织(BAT)在生热作用(通过燃烧卡路里产生热量的过程)中发挥着重要作用。最近的研究......

远距离的神经元连接或能驱动人类胶质母细胞瘤的进展

胶质母细胞瘤(GBM)是一种最具侵袭性和致死性的脑瘤,尽管患者进行了治疗,但GBM的复发往往是不可避免的,而且其往往会在手术边缘之外或远离原发性肿瘤的地方复发,这就突出了肿瘤浸润在这种恶性疾病中所扮演......

更好模拟和理解人脑,薄如原子的人工神经元面世

来自英国牛津大学、IBM欧洲研究所和美国得克萨斯大学的一个科研团队宣布了一项重要成就:他们通过堆叠二维(2D)材料,开发出一种厚度仅几个原子大小的人工神经元,其能够处理光和电信号进行计算,有望用于下一......