发布时间:2019-01-10 14:59 原文链接: 土壤水分各种测量方法的比较与分析

  农田作物生长需要zui佳的水、肥、气、热环境,水是zui重要的调节因子。适宜的农田土壤水分状况,可达到节水增产的功效。因此,适时、方便、准确地监测农田土壤水分对农业生产有着重要的指导意义。目前,农田土壤水分测量方法层出不穷,如烘干法、张力计法、中子法或射线法、介电常数法或电磁波法、传感器法、电阻法或粒状列阵法、电容法、光电法、热扩散法等,各种方法都有其自身的适用范围和优缺点。本文对几种应用较广的农田土壤水分测量方法基本原理及其优缺点作一总结,在此基础上提出未来土壤水分测量方法的发展方向。
  
  1几种主要的农田土壤水分测量方法
  
  目前,应用较广泛的农田土壤水分测量方法有:烘干法、张力计法、中子法、时域P频域反射仪等。
  
  111烘干法
  
  烘干法,也叫称重法或土钻法。一般的做法是:将用土钻取好的土样置于事先称重的铝盒(若需要测土壤体积含水率,改用环刀取样)中称重,然后一起放入烘箱,在105~110℃(温度过高,有机质易碳化散逸)温度下烘至恒重(间隔3h的测量差异不超过3mg),实际操作中一般烘12~14h,在干燥器中冷却20min称重即可,2次重量的差即为土壤含水率。
  
  烘干法的优点是对硬件要求不高,就样品本身而言结果可靠。一般认为,传统的烘干法测得的土壤水分值是可信的,可作为其它各种土壤水分测量方法的校正标准。但它的缺点也是明显的,烘干法费时、费力,深层取样困难,取样会破坏土壤,不能实现对土壤水分定点连续观测,受土壤空间变异性影响较大。
  
  112张力计法
  
  张力计法是1种应用很广泛的土壤水分测量方法,它测量的是土壤基质势,即土壤水吸力。在应用张力计测量土壤含水率之前,必须建立土壤水吸力和当前土壤含水率之间的关系,即俗称的土壤水分特征曲线。这种关系受土壤质地和结构的影响,在1个闭合的多孔陶瓷压力盘产生不同压力作用于测定土样,测出土壤的不同残余水分含量,便可得到对应的土壤水分特征曲线。
  
  张力计是1根充满水的密闭的管子,一端有1个多孔陶瓷头(孔径约110~115μm),可插入土壤中,另一端连接1个负压表。通过多孔陶瓷头的吸力,水分不停地流动直到土壤水吸力与张力计的压力达到平衡,这时压力表指示的负压值即为土壤水吸力。
  
  张力计法的优点是能够比较准确地测量湿润土壤的基质势,能够定点连续观测,受土壤空间变异性的影响较小,而且设备低廉,适于灌溉和水分胁迫的监测。其缺点是读数反应慢,需要长时间平衡后才能读数,且量程较窄,仅能测定小于8kPa的土壤水吸力,不适用于极端干燥土壤。在长期测量过程中,如遇高温干旱季节,需要给管子补充水分,且陶瓷头易损坏,需要定期养护或更换,运行费用较高。土壤水势测定仪就是采取张力计法的测量原理研制的,适用于任何的土壤性质监测。
  
  113中子法
  
  中子法的原理是中子从1个高能量的中子源发射到土壤中,与土壤中氢原子(绝大部分存在于水分子中)碰撞后,能量衰减,这些能量衰减的中子可被检测器检测到,通过标定建立检测到的中子数与土壤含水率的函数关系,便可转化得到土壤含水率。
  
  利用中子仪测量土壤水分含量,只需预先埋设,测量时不破坏土壤结构,测量速度快,测量结果准确[1],可定点连续观测,且无滞后现象,但中子法并不能实现长期大面动态监测[2]。由于中子法测量的实际上是半径约几到几十厘米的球体含水量,其半径随着土壤含水率大小而改变,所以土壤处于干燥或湿润周期时,或对于层状土壤以及表层土壤,中子法的测量结果并不可靠。对于高有机质土壤,有机质中的氢也会影响中子仪对土壤含水率的测定。另外,中子仪在使用前也需要田间校准,受土壤质地和容重的影响,室内外校准曲线差异较大[3],同时中子仪设备昂贵,又需专门的防护设备,一次性投入大,特别是对人存在潜在的辐射危害,因此并不能广泛应用。
  
  114时域反射仪(TDR)
  
  TDR(TimeDomainReflectometry)是1种介电常数法,其基本原理是高频电磁脉冲沿传输线在土壤中传播的速度依赖于土壤的介电常数Ka,而Ka主要受土壤水分含量支配(20℃时,自然水、空气和土壤颗粒的Ka分别为80、1、3~5)。根据电磁波在介质中传播频率计算出土壤的介电常数Ka,从而利用土壤介电常数和土壤体积含水量(θv)之间的经验关系计算出土壤含水率。
  
  Ka在电磁波频率为1MHz~1GHz时,与电磁波在电极(长度L)中往复的传播速度(V)呈如下关系:Ka=(cPV)2=(ct/2L)2
  
  (1)式中:c为光速,c=3×108mPs;t为电磁波的传达时间,s。电磁波在各点的反射很明显,可以很准确的计测出t,从而可用(1)式计算出Ka。Topp等用TDR测定了电磁波的传播时间,并得出该传播时间在大部分土壤中与土壤体积含水率(θv)的经验公式[4]
  
  :θv=-513×10-2+2192×10-2Ka-515×10-4K2a+413×10-6Ka3当θv≤016时(2)但该经验关系只适用于当Ka→1或Ka→80136(20℃)时,且主要适用于砂性土壤。
  
  TDR为新近发展起来的测定土壤含水率的主流方法,具有许多优点,如无核辐射,极其快速,可以定点原位连续测定,且测定值精确。在常规土壤中,这一仪器的测量误差小于5%。一般不需标定,测量范围广(含水率0~100%),操作简便,野外和室内都可使用,TDR探针可长期埋在土壤中,需要的时候再连上TDR测量。另外,TDR受土壤盐度影响很小,能够测量表层土壤含水率(中子仪法不行)。但是,TDR的测量值受温度、容重、土质的影响[5-6],在导电率较高的土壤中(如盐碱地),其测量精度也会降低,对有机质含量高、容重特别高或特别低以及重黏土壤需要重新标定后才能使用。目前,TDR在国内的使用主要依赖进口,且价格较高,其应用也受到一定限制。
  

相关文章

秸秆投入有助于土壤有机碳多碳库形成

区分植物源和微生物源有机碳是确定土壤有机碳库形成的关键。在施肥的农田生态系统中,土壤有机碳的形成、周转和积累受肥料类型和土壤微生物及其相互作用的调控。不同肥料投入有可能改变土壤微生物对其利用策略,从而......

环境相关,该院发布23种仪器采购需求

为进一步有效推进广东省地球关键带(土壤)污染归趋与风险防控实验室(一期)建设,提升土壤、地下水污染物环境归趋与风险防控能力,广东省环境科学研究院拟购置一批实验建设有关的设备,开展土壤、地下水等环境介质......

2024年治污攻坚怎么部署?27省工作重点汇总

新年伊始,随着全国各地两会密集召开,各地的2024年政府工作报告也相继出炉。记者梳理发现,截至2月18日,共有27省、自治区、直辖市发布2024年政府工作报告。各地依据当地经济发展潜力等因素,锚定了2......

新型传感器实现土壤磷酸盐现场连续监测

中国科学院合肥物质科学研究院、中科合肥智慧农业协同创新研究院院长、研究员王儒敬,院长助理、副研究员陈翔宇课题组与安徽理工大学教授唐超礼团队合作,研发了用于土壤磷酸盐现场连续监测的电化学微流体系统。相关......

科学氮素管理能促进土壤氮驻留

记者近日从海南大学获悉,该校三亚南繁研究院张金波与孟磊教授团队发现,基于氮素循环知识的综合管理可对生态系统氮驻留产生积极影响,这为降低全球氮损失风险提供了新思路。相关研究成果近日发表于国际期刊《自然·......

基于XRF和VisNIR数据融合的土壤重金属浓度分区预测是否更佳?

文章信息第一作者:石陶然通讯作者:吴春发教授,骆永明研究员通讯单位:南京信息工程大学,中国科学院南京土壤研究所https://doi.org/10.1016/j.scitotenv.2023.1683......

稻田土壤甲烷微生物同化效应与机制研究获进展

由于长期淹水状态,稻田成为温室气体甲烷的重要排放源。事实上,稻田土壤产生的甲烷,大部分在排放到空气前已被好氧甲烷氧化菌所氧化。而好氧甲烷氧化菌可分为I型和II型两个类群。它们具有不同的生理生态特性和代......

国家先进污染防治技术目录公示涉23项固废和土壤污染防治技术

近日,生态环境部征集并筛选了一批先进固体废物和土壤污染防治技术,编制形成2023年《国家先进污染防治技术目录(固体废物和土壤污染防治领域)》(公示稿),并进行公示。《国家先进污染防治技术目录》中包括1......

研究揭示增温条件下旱区生物结皮调节土壤净碳交换的地理分布规律

生物结皮是干旱地区关键的生物组成部分,通过多种方式影响土壤CO2交换,在土壤碳循环中发挥重要作用。生物结皮可通过产生光合和呼吸作用直接影响土壤CO2交换,还可通过改变土壤微生物栖居环境间接影响土壤碳释......

涉及气相、液相、原子荧光!环境部征求7项标准意见

近日,生态环境部公开征求7项国家生态环境标准意见,涉及征求意见单位名单,水质17种杂环类农药的测定高效液相色谱法(征求意见稿)、《水质17种杂环类农药的测定高效液相色谱法(征求意见稿)》编制说明等,详......