发布时间:2019-09-13 13:27 原文链接: 蛋白质的提取及粗分离实验

  • 硫酸铵盐析法

           

实验方法原理

分离纯化蛋白质,首先要从原材料中提取目的蛋白,然后通过粗分离的方法除去大量杂质,最后进行精细分离,得到目的蛋白。本实验以新型基因重组人TNF为例阐明重组蛋白TNF的提取及初步分离。
 

TNF的提取是将发酵菌体裂解,在一定的条件和溶液中,使被提取的TNF充分释放出来,经离心收集混合液中提取的TNF成份的过程。含有TNF的提取溶液中,含有大量的杂蛋白,由于蛋白质在水溶液中的溶解度主要取决于蛋白质分子表面的水分子数目,即蛋白质表面亲水基团与水分子形成水化膜的程度和带电荷的情况,当中性盐如硫酸铵等加入蛋白质溶液时,由于中性盐对水分子的亲和力大于蛋白质,使蛋白质分子周围的水化膜减弱或消失,蛋白质溶解度降低,同时由于中性盐的加入,蛋白质溶液的离子强度发生了改变,蛋白质表面电荷被大量中和,更加导致蛋白质溶解度降低,使蛋白质分子之间互相聚集而发生沉淀。不同的蛋白质由于其带电性,亲水性等性质的不同,会在不同浓度的盐中形成沉淀。依此原理可对混合蛋白质进行粗分离。该实验中利用硫酸铵盐析除去大部分杂蛋白从而使TNF得到初步纯化。

实验材料

新型基因重组人TNF

试剂、试剂盒

蔗糖 TRIS 盐酸 乙二氨四乙酸二钠 氢氧化钠 STE溶液 Dnase I 脱氧胆酸钠溶液

仪器、耗材

透析袋 搅拌棒 灭菌锅 电子天平 烧杯 称量纸 药匙 量筒 烧杯 制冰机

实验步骤

一、试剂配制
 

1.  STE(25%蔗糖  10 mmol/L Tris-HCl pH 8.5 1 mmol/L EDTA)

 蔗糖       250 g

1 mol/L Tris.HCL   10 ml

0.5 mol/L EDTA     2 ml,加水至1 000 ml

115℃,20 min高压灭菌


2.  1mol/L  MgCl2

取  MgCl2  203.30 g,加水至1 000 ml
 

3.  Tris-HCL  pH8.5

取Tris  121.14 g

用HCL调pH至8.5,加水至1 000 ml

(12 mol/L  HCL约30 ml)
 

4.  0.5 mol/L EDTA pH8.5

乙二氨四乙酸二钠      186.12 g

NaOH  20 g,加水至1 000 ml

121℃,20 min高压灭菌
 

二、操作步骤
 

1.  称取菌体重量,按5~10 ml/g菌体加入STE溶液,搅拌至菌体完全悬浮。
 

2.  按0.5~1 mg/g菌体加入用STE溶液新鲜配制的溶菌酶溶液,用玻璃棒用力搅匀后于4℃环境中放置20 min。此时菌液呈粘稠状。
 

3.  按10 mg/g菌体加入用STE溶液新鲜配制的脱氧胆酸钠(DOC)溶液,用力搅匀。
 

4.  加入5~10 ml 1 mol/L MgCl2溶液,搅匀后加入约40 μl Dnase I(25 mg/ml)充分搅拌至菌液变稀。
 

5.  15 000 rpm,4℃离心30 min。
 

6.  取离心上清,精确量取其体积,测定蛋白质浓度,倒入置于冰浴的烧杯中,边搅拌边缓慢加入固体硫酸铵使其达到50%饱和度。待固体硫酸铵安全溶解后,静置于0℃环境中30 min。
 

7.  离心,15 000 rpm,4℃,30 min。取离心上清,量其体积,测定蛋白浓度。
 

8.  将离心上清装入透析袋,4℃搅拌在pH8.5 20 mmol/L Tris-Hcl,1 mmol/L EDTA溶液中透析。
 

加入硫酸铵不论是固体硫酸铵,还是加入饱和硫酸铵溶液,加入时应边加入边搅拌,特别注意① 加入硫酸铵要慢,因为太快会引起蛋白质发生共沉淀,加入固体硫酸铵时事先要将硫酸铵研磨成粉末,加入饱和硫酸铵溶液时要一滴一滴地加入;② 搅拌要慢,搅拌剧烈,蛋白质溶液容易起泡沫,由于表面张力效应会引起蛋白质变性。

            展开


相关文章

瑞典研究探明蛋白质引导电荷运移机制

瑞典哥德堡大学科研人员探明了细胞中的能量如何通过微小的原子运动引导以到达蛋白质中的正确位置。相关研究发表在《自然》(Nature)杂志上。科研人员使用飞秒X射线晶体学技术分析了果蝇中的一种蛋白质,即光......

新探针可实现对蛋白质N端组学深度富集检测

中国科学院上海药物研究所研究员黄河、柳红合作,研究设计合成了一种含有吡啶甲醛片段的可断裂分子探针2PCA-Probe,可实现对蛋白质N-端的深度富集检测。相关研究发表于《美国化学会志》。蛋白质水解是一......

预测蛋白质“糖衣”形态有了新方法有助于药物研发

2月29日,德国、波兰、法国与中国台湾组成的科研团队在学术期刊《细胞》发表成果,开发出能在几分钟之内预测蛋白质“糖衣”形态的新型计算方法,有助于进一步了解蛋白质在健康和疾病中的作用,帮助药物与疫苗研发......

科学家成功解析叶绿体基因转录蛋白质机器构造

叶绿体中的光合作用将光能转化为化学能,吸收二氧化碳,释放氧气,是地球生物圈的重要塑造者。叶绿体约在15亿年前通过蓝藻内共生进化而来。在进化过程中,叶绿体基因要么被废弃,要么逐渐转移到细胞核染色体中,导......

人与猿类如何在进化中“甩掉”尾巴

猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......

应激诱发仔猪肌肉生长阻滞分子机制研究获新进展

集约化养殖过程中,免疫应激普遍存在于断奶仔猪饲养环节,会导致仔猪肌肉蛋白质降解和生长阻滞,最终严重影响肥育阶段产肉率和肉品质,给养猪业带来巨大经济损失。因此,有效缓解仔猪免疫应激是当前养猪生产亟待解决......

研究发现蛋白质摄入过量不利于动脉健康

美国匹兹堡大学医学院的研究人员发现,摄入过量的膳食蛋白质会增加动脉粥样硬化风险。研究结果发表在19日的《自然·新陈代谢》杂志上。该研究结合了小型人体试验、小鼠实验和培养皿中的细胞实验。结果显示,当膳食......

Nature:2024年值得关注的七项技术,它是核心

随着人工智能(AI)技术的不断突破和大型模型的层出不穷,AI受到了前所未有的关注。面对这一浪潮,人们不禁好奇:未来究竟会是什么样子?为了解答这一问题,《Nature》杂志发布了未来的一年里,将密切关注......

替代性蛋白质或为碳减排开辟新天地

荷兰科学家研究认为,到2050年,用替代性蛋白质取代50%的动物产品,可以腾出足够的农业用地生产可再生能源(其能量相当于今天的燃煤发电),同时从大气中去除大量二氧化碳。相关研究近日发表于环境科学期刊《......

Nature发布2024年值得关注的七大技术,首位中国科学家成果入选

2024年1月22日,《自然》发布了2024年值得关注的七大技术——大片段DNA插入、人工智能设计蛋白质、脑机接口、细胞图谱、超高分辨率显微成像、3D打印纳米材料和DeepFake检测。七大技术中,生......