发布时间:2019-11-20 17:27 原文链接: 线粒体的结构与功能

In an attempt to be concise and understandable, introductory level courses and textbooks frequently present concepts that are technically correct, but lead to misconceptions on the part of the student because they omit too much. In discussions about mitochondria students frequently come away with a superficial understanding of the true nature of Krebs' cycle, electron transport, respiratory control, and oxidative phosphorylation.

These pages were designed to supplement laboratory work with mitochondria by providing background in as much detail as the student might wish. Students at any level are likely to encounter terms with which they are unfamiliar. A glossary of terms is included in this project for your convenience. A brief overview of mitochondria structure and function is presented just to get you started. You can then wind your way through the main path of detailed information.

Structure

Mitochondria are bacteria-sized organelles, found in the cytoplasm of virtually all eukaryotic cells. They are especially abundant in cells and parts of cells that are associated with active processes. For example, in flagellated protozoa or in mammalian sperm, mitochondria are concentrated around the base of the flagellum or flagella. In cardiac muscle, mitochondria surround the contractile elements. Hummingbird flight muscle is one of the richest sources of mitochondria known. Thus, from their distribution alone one suspects that they are involved in energy production.

We know now that multicellular organisms probably could not exist without mitochondria. Mitochondria make efficient use of nutrient molecules, requiring oxygen in the process. They are, in fact, why we need oxygen at all.

The double-membraned mitochondrion can be loosely described as a large wrinkled bag packed inside of a smaller, unwrinkled bag. The two membranes create distinct compartments within the organelle, and are themselves very different in structure and in function.

The outer membrane is a relatively simple phospholipid bilayer, containing protein structures called porins which render it permeable to molecules of about 10 kilodaltons or less (the size of the smallest proteins). Ions, nutrient molecules, ATP, ADP, etc. can pass through the outer membrane with ease.

The inner membrane is freely permeable only to oxygen, carbon dioxide, and water. Its structure is highly complex, including all of the complexes of the electron transport system, the ATP synthetase complex, and transport proteins. The wrinkles, or folds, are organized into lamillae (layers), called the cristae (singlular: crista). The cristae greatly increase the total surface area of the inner membrane. The larger surface area makes room for many more of the above-named structures than if the inner membrane were shaped like the outer membrane.

The membranes create two compartments. The intermembrane space, as implied, is the region between the inner and outer membranes. It has an important role in the primary function of mitochondria, which is oxidative phosphorylation.

The matrix contains the enzymes that are responsible for the citric acid cycle reactions. The matrix also contains dissolved oxygen, water, carbon dioxide, the recyclable intermediates that serve as energy shuttles, and much more. Because of the folds of the cristae, no part of the matrix is far from the inner membrane. Therefore matrix components can quickly reach inner membrane complexes and transport proteins.

Electron micrographs have revealed the three dimensional structure of mitochondria. However, since micrographs are themselves two dimensional, their interpretation can be misleading.

Texts frequently show a picture of a 'typical' mitochondrion as a bacteria-sized ellipsoid (perhaps 0.5 by 1 micrometer). However, they vary widely in shape and size. Electron micrographs seldom show such variation, because they are two-dimensional images.

Isolated mitochondria, such as from homogenized muscle tissue, show a rounded appearance in electron micrographs, implying that mitochondria are spherical organelles.

Mitochondria in situ can be free in the cytoplasm or packed in among more rigid structures, such as among the myofibrils of cardiac muscle tissue. In cells such as muscle, it is clear that mitochondria are not spherical, and often are not even ellipsoid. In some tissues, the mitochondria are almost filamentous, a characteristic that two dimensional micrographs may fail to reveal.

A planar section cuts through one or several parts of the organelle, making it appear that there is more than one. The image we see of a circular or ellipsoidal organelle may disguise the true nature of the mitochondrion.


相关文章

NatureCancer:线粒体DNA突变增强免疫检查点疗法的癌症治疗效果

几十年来,我们已经知道超过50%的癌症存在体细胞的线粒体DNA(mtDNA)突变。而生殖细胞中的线粒体DNA突变是人类遗传性代谢疾病最常见的原因,其影响已经得到证实。然而,线粒体DNA突变在癌症中的生......

遗传发育所玉米籽粒发育机制研究获进展

RNA编辑广泛存在于植物的线粒体和叶绿体中。RNA编辑作为一种RNA转录后加工机制,对于调控基因表达具有重要意义。RNAC-U的编辑是胞嘧啶(C)经过脱氨转变为尿嘧啶(U)的过程。在此过程中,PPR(......

Nature:科学家成功揭示神经递质转运蛋白的精细化结构

神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......

激光粒度仪原理、结构及可测样品类型

激光粒度仪是利用颗粒对光的散射(衍射)现象测量颗粒大小的。即光在行进过程中遇到颗粒(障碍物)时,会有一部分偏离原来的传播方向,颗粒尺寸越小,偏离量越大;颗粒尺寸越大,偏离量越小.散射现象可用严格的电磁......

海洋所等在海洋障碍层结构反演重构方面获进展

近日,中国科学院海洋研究所尹宝树研究团队与美国加利福尼亚大学洛杉矶分校合作,针对海洋障碍层结构反演重构方面取得新进展。相关研究成果发表在《环境研究通讯》(EnvironmentalResearchCo......

研究揭示肿瘤浸润CD8+T细胞代谢适应的新机制

肿瘤微环境中T细胞效应功能的丧失是免疫治疗失败的主要原因之一。代谢适应对T细胞功能和命运具有重要的调控作用。线粒体能量代谢受到多种线粒体行为的影响,包括线粒体融合和线粒体-内质网耦连,而目前人们对肿瘤......

新发现|测量线粒体DNA损伤可预测帕金森病

帕金森病是一种脑部疾病,它会逐渐导致行动困难、震颤,最终痴呆。在其长达数年的病程中,早期诊断往往非常困难。近日,一项使用啮齿动物和帕金森病患者组织的研究表明,血液样本中发现的DNA损伤为早期诊断该疾病......

Nature:揭示线粒体的整合应激反应控制肺泡上皮细胞的命运

在一项新的研究中,来自美国西北大学的研究人员发现线粒体能调节肺泡上皮细胞发育所必需的细胞信号,其中肺泡上皮细胞是交换氧气和二氧化碳以避免呼吸衰竭的关键细胞。相关研究结果于2023年8月9日在线发表在N......

科研人员开发邻域纳米结构生物传感膜

葡萄糖检测和实时连续监测对于糖尿病等疾病的诊断和预防,以及制糖和发酵过程中的可控生产至关重要。在这一过程中,以葡萄糖氧化酶、普鲁士蓝、电极为核心的葡萄糖生物传感设备极具前景。近日,中国科学院过程工程所......

线粒体翻译损伤通过激活线粒体UPR延长线虫寿命

近日,《氧化还原生物学》(RedoxBiology)在线发表了中国科学院分子细胞科学卓越创新中心研究员周小龙研究组与中国科学院生物物理研究所研究员陈畅研究组的合作研究成果Mitochondrialtr......