发布时间:2019-12-17 12:40 原文链接: 光学显微镜效率怎么定义和计算

一、数值孔径

数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。其数值的大小,分别标刻在物镜和聚光镜的外壳上。

数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。用公式表示如下:NA=nsinu/2

孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。

显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1。

数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。

这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值。

数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。

二、分辨率

显微镜的分辨率指能被显微镜清晰区分的两个物点的最小间距,又称“鉴别率”。其计算公式是σ=λ/NA

式中σ为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则σ值越小,分辨率就越高。

要提高分辨率,即减小σ值,可采取以下措施:

1、降低波长λ值,使用短波长光源。

2、增大介质n值以提高NA值(NA=nsinu/2)。

3、增大孔径角u值以提高NA值。

4、增加明暗反差。

三、放大率和有效放大率

由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积:

Γ=βΓ1

显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率。

放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。显微镜放大倍率的极限即有效放大倍率。

分辨率和放大倍率是两个不同的但又互有联系的概念。有关系式:500NA<Γ<1000NA

当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。

四、焦深

焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大,可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:

1、焦深与总放大倍数及物镜的数值孔径成反比。

2、焦深大,分辨率降低。

由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍。

五、视场直径(FieldOfView)

观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。

视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。

有公式:

F=FN/β

式中F-视场直径;

FN-视场数(FieldNumber,简写为FN,标刻在目镜的镜筒外侧);

β-物镜放大率。

由公式可看出:

1、视场直径与视场数成正比。

2、增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。

六、覆盖差

显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。

国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度。

七、工作距离WD

工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。

在物镜数值孔径一定的情况下,工作距离短孔径角则大。

数值孔径大的高倍物镜,其工作距离小


相关文章

构建新质生产力!中科曙光提出“立体计算”

4月2日,中科曙光“立体计算湖南行”活动在长沙举办。面对“加快发展新质生产力”的新要求,中科曙光提出“立体计算”新思路,旨在打造一种全新的计算体系构建与运营模式。中科曙光“立体计算湖南行”活动在长沙举......

英国新建散射扫描近场光学显微镜设施

英国国家物理实验室(NPL)和曼彻斯特大学建立了新的联合设施——散射扫描近场光学显微镜(s-SNOM)。该设施位于英国曼彻斯特大学,能够在宽温度范围内为产业界提供纳米级、非接触、非破坏性近红外和可见光......

脑机接口“连接”产业新空间

科技感满满的假肢不是装饰,而是能握拳、抓取,甚至持笔写字、握拍打球;仅靠“意念”就能驱动机械臂拿取东西,甚至操作电脑输入信息;穿戴式的设备记录脑电波的波动,将大脑的运转情况以数值形式反馈……众多科幻电......

永新光学:光学产品助力光通讯、半导体晶圆及集成电路检测

永新光学11月13日在互动平台表示,目前公司生产的光刻镜头可应用于PCB光刻设备。此外,公司生产的光学显微镜及光学元组件可用于光通讯、半导体晶圆及集成电路的检测等领域。永新光学:永新光学股份有限公司成......

“进入空间计算时代”:苹果发布MR头显靠手眼操控

“你可以在虚拟空间与数字内容互动,就像在物理空间里一样。你可以用最自然、最直观的工具来控制VisionPro,即眼睛、手和声音。操控和观看不再受显示屏的限制,周围的环境变成了一个无限的画布,你可以在任......

“祖冲之号”量子计算云平台面向全球开放

联网就能用上全球领先的量子计算机?这一梦想正走进现实。5月31日,科大国盾量子技术股份有限公司携手弧光量子等合作伙伴发布新一代量子计算云平台,接入“祖冲之号”同款176比特超导量子计算机。这不仅刷新了......

院士专家联合撰文:智能计算进展惊人挑战巨大

2023年开年伊始,由中国工程院院士潘云鹤、陈左宁、邬江兴,中国科学院院士王怀民等领衔,来自之江实验室、浙江大学、索邦大学、伦敦帝国理工学院等单位的海内外9位院士及12位专家,在《科学》合作期刊Int......

“全在一”器件,实现单器件动态感知、存储、计算一体化

#超级创新实验室——复旦大学微电子学院#......

Paige和SonoraQuest建立数字病理学合作伙伴

计算病理学公司Paige近日宣布建立合作伙伴关系,以在亚利桑那州的SonoraQuest实验室实施数字病理学工作流程,以改善诊断。总部位于纽约的Paige将为SonoraQuest提供其人工智能驱动的......

计算机能诊断阿尔兹海默症吗?基于1000多人的研究发表

诊断阿尔茨海默病需要大量时间和金钱。在进行冗长的面对面神经心理学检查后,临床医生必须详细转录、审查和分析每个反应。但波士顿大学的研究人员已经开发出一种新工具,可以自动化该过程并最终使其在线移动。他们的......