发布时间:2020-03-09 18:55 原文链接: 染色质免疫沉淀法(Chromatinimmunoprecitation,ChIP)

染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究体内DNA与蛋白质相互作用的重要工具。它可以灵敏地检测目标蛋白与特异DNA片段的结合情况,还可以用来研究组蛋白与基因表达的关系。

核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。

 

真核生物细胞状态是由内源和外源因素共同影响的,所有信号传递途径的终点都是DNA。

DNA通过核蛋白复合物组成染色质,染色质是基因调控的一个重要作用位点。转录激活因子和辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。随着越来越多组蛋白核心结构区域和羧端修饰的确定,组蛋白密码在控制和调节基因功能过程中的作用越来越明确。

参与修饰的酶根据其作用的不同而分类:如组氨酸乙酰转移酶(HATs)可以将乙酰基团转到组蛋白上;组蛋白去乙酰酶(HDACs)可以去除氨基酸上的乙酰基团;组蛋白甲基转移酶(HMTs)可以将甲基基团转移到组蛋白上等不同组氨酸修饰标记对应于不同的生物学过程,它可以作为调节因子的作用位点,也可以用来改变染色质结构。

 

染色质免疫沉淀分析(ChiP)是基于体内分析发展起来的方法,它的基本原理是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。它能真实、完整地反映结合在DNA序列上的调控蛋白,是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的一种很好的方法。

CHIP不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。而且,CHIP与其他方法的结合,扩大了其应用范围:CHIP与基因芯片相结合建立的CHIP-on-chip方法已广泛用于特定反式因子靶基因的高通量筛选;CHIP与体内足迹法相结合,用于寻找反式因子的体内结合位点;RNA-CHIP用于研究RNA在基因表达调控中的作用。由此可见,随着CHIP的进一步完善,它必将会在基因表达调控研究中发挥越来越重要的作用。

 

凝胶电泳迁移率改变分析(EMSA)是目前研究转录调控蛋白和相应核苷酸序列结合的常用方法,但是由于许多转录调控蛋白有相似或相同的DNA结合位点,这种体外分析获取的结果不一定能真实地反映体内转录调控蛋白和DNA结合的状况。

染色质免疫沉淀分析(ChIP)是基于体内分析发展起来的方法,它能真实、完整地反映结合在DNA序列上的调控蛋白,是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的最好方法。ChIP技术和芯片技术的结合有利于确定全基因组范围内染色体蛋白的分布模式以及组蛋白修饰情况。ChIP基本试剂盒和特定蛋白质抗体结合完成一个染色质免疫沉淀分析。

 

该技术主要应用于:

 

1.组蛋白修饰酶的抗体作为“生物标记”

 

2.转录调控分析

 

3.药物开发研究

 

4.有丝分裂研究

 

5.DNA损失与凋亡分析

相关文章

科学家揭示体外组装和体内染色质纤维普遍折叠模式

9月13日,中国科学院生物物理研究所朱平研究组在国际期刊《细胞报告》(CellReports)在线发表论文,利用冷冻电子断层三维成像方法,揭示了体外组装和体内染色质纤维一种普遍存在的双螺旋折叠模式。在......

NatureMethods:北大汤富酬团队揭示单个细胞内高阶染色质结构

调控基因组元件的高阶三维(3D)组织为基因调控提供了拓扑基础,但尚不清楚哺乳动物基因组中的多个调控元件如何在单个细胞内相互作用。2023年8月28日,北京大学汤富酬团队在NatureMethods(I......

生物物理所揭示染色质组装因子CAF1介导核小体装配的结构基础

在真核细胞分裂过程中,染色质结构的重新建立对于维持基因组完整性和表观遗传信息传递至关重要。DNA复制一方面破坏母链DNA的亲本核小体,另一方面新生核小体必须在DNA子链上重建。染色质组装因子CAF-1......

揭秘早期哺乳动物的发育过程

由于小鼠的易实验性和强遗传性,其一直是生物医学研究中使用广泛的动物模型。但是,胚胎学研究发现,小鼠早期发育的许多方面与其他哺乳动物不同,从而使有关人类发育的推论复杂化。英国剑桥大学等研究团队合作构建了......

新进展!构建新型双碱基编辑器

碱基编辑器是基于CRISPR/Cas9发展的新一代基因组编辑技术,可诱导单个碱基的突变,而鲜有关于特异性介导A-to-G和C-to-G双突变的碱基编辑工具的研究。此外,关于碱基编辑系统与染色质环境之间......

图像分析在植物染色体和染色质结构研究中的应用

染色体核型分析对遗传进化和多样化的研究有重要作用,详细的染色体图谱被认为有助于植物育种,并帮助生物学家进行基本的生物学和遗传学研究。图像分析在染色体核型研究中应用广泛,然而通过计算机技术对染色质结构图......

中外科学家合作揭示开花植物染色质浓缩新机制

染色质经过螺旋缠绕浓缩形成染色体的过程,对于维持真核生物细胞正常体积至关重要。之前的研究表明染色质浓缩发生在异染色质区,而常染色质区为方便转录过程则停滞在松散状态不被浓缩。近期,来自清华大学和英国约翰......

Nature:解析人源PBAF染色质重塑复合物结合核小体的结构

清华大学生命科学学院/结构生物学高精尖创新中心/清华-北大生命科学联合中心陈柱成教授研究团队在《自然》杂志在线发表题为“人源PBAF染色质重塑复合物结合核小体的结构”(Structureofhuman......

科学家绘制人类单细胞染色质可及性图谱

在人类细胞中,总长约2米的基因组DNA通过与组蛋白缠绕形成核小体,并经过螺旋折叠等方式盘绕形成染色体进而团聚于直径10微米的细胞核中。在细胞内的DNA需要进行转录等活动的时候,DNA才会从组蛋白中释放......

北京基因组所单细胞中识别染色质类染色质拓扑的算法

基因组DNA和组蛋白以特定的形式高度折叠在细胞核中,这一高级结构即三维基因组学,对细胞核内的诸多生命活动至关重要。基于染色质构象捕获(3C),尤其是高通量技术(Hi-C,ChIA-PET)的发展推动了......