发布时间:2020-04-29 10:07 原文链接: 低成本聚合物微流控芯片加工技术综述

微流控技术最初源自于微机电系统(micro-electromechanical system, MEMS)在微量流体操控方面的研究,形成于20世纪90年代初。最近十年来,伴随着分析化学和生命科学的蓬勃发展,由于微流芯片系统具有试剂和能量消耗少、检测和分析灵敏度高、检测时间短、可将多种功能集成化程度高等优势,在纳米纤维合成、纳米复合物制备、量子点合成、微纳米颗粒制备、电化学传感器、生物化学传感器、细胞生物学、分子生物学等领域得到了广泛的应用。通过微流控技术,可以将复杂的化学或生物分析合成过程整合在一块芯片中完成,实现了微全分析系统(μTAS)或被称为芯片实验室(lab-on-a-chip)。 

初期的微流控芯片加工技术完全继承自MEMS加工技术,步骤都需要在超净间内使用精密微加工设备完成,芯片的设计加工成本非常高昂,严重阻碍了其在分析化学和生命科学领域的推广应用。时至今日,欧美一些微流控技术公司生产的标准化玻璃或聚合物材料微流控芯 片单片售价仍在数十到几百美元,对于微流控芯片在生物、化学、医学等领域的应用和产业化也形成了阻碍。

近年来,机械、电子、化学、生物等领域的研究者根据其在各自领域的专长和经验,探索使用了多种低成本微加工方法。从相关论文的发表情况看,在Web of Science核心数据库中,从2000年到2018年1月以“低成本(low-cost)”和“微流控芯片(microfluidics)”为关键词的论文发表数量,呈逐年稳步增长的趋势,目前,该方向每年的SCI论文发表数量为550 篇左右。 

低成本微流控芯片的加工材料

硅和玻璃是最早用于微流控芯片的基体材料,主要是由于其加工方法可以直接套用MEMS和微电子领域的加工方法。硅和玻璃材料价格昂贵且不易加工,在微流控芯片的发展过程中很快就被以各类聚合物为代表的低成本材料所替代。现有各类微流控芯片的加工方法中,可供选择的低成本材料很多,有各类弹性体材料、热塑性聚合物材料、热固性聚合物材料、纸材料、生物材料等。本文的讨论中,将常见的可用于低成本微流控芯片加工的材料分为聚合物材料、纸材料、其他材料三类分别进行介绍。 

聚合物材料

弹性体材料 

本文所述的弹性体材料指的是能够在弱应力下发生显著形变,应力松弛后能迅速恢复到接近原有状态和尺寸的聚合物材料。聚二甲基硅氧烷(polydimethylsiloxane, PDMS)是目前在微流控芯片领域应用最为广泛的弹性体材料,PDMS用于微流控芯片最早在1998年由Whitesides等提出,PDMS具有价格低廉、光学透明、生物兼容性好、具有一定透气性等优点,是低成本微流控芯片的理想材料(如图1所示)。PDMS在微流控芯片加工中往往通过模塑成型的方法在表面形成微结构,其翻模精度甚至可以达到纳米(nm)级别。然而,PDMS也有通道易变形坍塌,对通道内流体有少量吸收等缺点。PDMS的加工和键合方法将在本文的低成本加工部分进行较为详细的介绍。

图1 基于PDMS材质的液滴发生微流控芯片

热塑性塑料 

热塑性塑料是日常生活中最为常见且应用广泛的材料,价格非常低廉,热塑性塑料可以在一定温度条件下变软后进行塑形。可用于低成本微流控芯片的热塑性材料种类很多,主要有聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、环烯烃类共聚物(COC)、聚碳酸酯(PC)、聚对苯二甲酸(PET)、聚氯乙烯(PVC)等。 

热塑性塑料中,PMMA由于材料成本低、热加工和光学性能良好,基于PMMA的微流控芯片在各类生命科学和医学研究中具有广泛应用;PS具有优异的生物兼容性,作为微流控芯片的基体材料在细胞培养等领域具有显著优势;COC作为一种较新的非晶性共聚高分子材料,与PMMA等热塑性材料相比,在紫外光波段具有优异的透过性能和更好的热稳定性,同时吸水性只有PMMA的1/10,COC芯片在大多数情况下(非极端温度情况)可以直接替代昂贵的玻璃芯片。 

纸材料 

纸基微流控芯片是通过各种方法将疏水材料渗透入亲水的纸纤维中,通过疏水材料的“围墙”控制亲水纸纤维内的流体流动,从而形成了纸基微流控芯片,常见的喷墨打印机、丝网印刷、3D打印机、蜡打印机甚至蜡笔都可以被用来加工低成本的纸基微流控芯片。在纸张选择上,常见的有Whatman系列滤纸或色谱分析纸。与聚合物材料微流控芯片需要封闭流道不同,纸基微流控芯片由于液体在纸张纤维内部运动,往往不需要对流道进行封闭,即开放式流道(open-channel)。 

图2所示的用于血细胞分离和血清蛋白检测的纸基微流控芯片,利用了浸蜡的方法定义了液体在纸纤维内流动的通道,随后通过纸纤维的孔隙对血浆和血细胞进行分离,最后通过显色测定血清蛋白含量。纸基微流控芯片由于材料和加工成本低廉,已经被广泛应用于各类医学和生命科学检测研究和应用中,如唾液乙醛检测、重金属检测、血糖检测、乳酸检测等。

图2 用于血细胞分离和血清蛋白检测的纸基微流控芯片


相关文章

微流控芯片技术助力细胞外囊泡产量提高

2022年12月24日,中国科学院深圳先进技术研究院杨慧课题组的最新研究成果发表在生物医学工程领域TOP期刊MaterialsTodayBio上。研究团队研发了一种微流控芯片技术,实现了细胞的工程化改......

新型微流控芯片识别RNA的小片段

CRISPR/Cas技术不仅可以改变基因:根据弗莱堡大学的一项研究,通过使用所谓的基因剪刀,可以更好地诊断癌症等疾病。在这项研究中,研究人员介绍了一种微流控芯片,该芯片可识别RNA的小片段,从而比目前......

美国科学家打造木质胶合板微流控芯片

由桦木胶合板制成的微流控芯片已得到概念验证。激光切割机在木板上刻下沟槽,再涂覆聚合物以抵抗芯吸效应。当通过表面等离子体耦合荧光增强用于蛋白质检测时,这种木质芯片的性能或将优于塑料材质的微流控芯片。另一......

有望减少放射治疗副作用的微流控芯片

南澳大学(UniversityofSouthAustralia)生物医学工程系教授BenjaminThierry正在与哈佛大学(HarvardUniversity)的研究人员合作,利用微流控技术测试不......

如何选择微流控芯片?

微流控芯片是用于微流控研究的装置,其中的微通道已经被模塑或图案化。形成微流控芯片的微通道被连接起来以允许流体流过不同的通道,从一个地方流到另一个地方。这些微流道网络通过进口和出口连接到外部环境。通过被......

在8小时内!识别抗生素相互作用的药物筛选微流控芯片

韩国科学技术院(KAIST)的一支研究团队开发出了一款基于微流控技术的药物筛选芯片,能够在8小时内识别两种抗生素的协同相互作用。该芯片可以成为基于细胞的药物筛选平台,用于探索抗生素相互作用的关键药理学......

南科大程鑫课题组在微流控芯片研究领域获进展

南科大材料科学与工程系教授程鑫带领的课题组在微纳加工技术及其在纳米压印、半导体工艺与器件、纳米光学等多种应用领域具有丰富的研究经验,近年来,在微流控芯片领域开展了大量创新性研究工作,并取得了一系列成果......

内置石墨烯传感器的微流控芯片可检测微小样本中的细菌

石墨烯是一种由碳原子组成的二维材料,并且拥有许多神奇的特性。在被当做场效应晶体管时,它可以检测施加在其表面是哪个的轻微物理力,因此特别适合针对微观样本的小诊断。近日,日本大阪大学的研究人员,就利用石墨......

北理“空间生物培养与分析载荷技术及应用”通过专家鉴定

2018年7月10日,中国分析测试协会组织专家组在北京对北京理工大学自主设计、研发的“空间生物培养与分析载荷技术及应用”科技成果进行了技术鉴定。成果鉴定会会场鉴定专家组听取研究报告会议由中国分析测试协......

林金明:CMMS为细胞研究提供新工具

分析测试百科网讯中国有句古话,“工欲善其事,必先利其器”,在细胞分析方面的意义则是为了阐明细胞的生命过程,需要特殊的工具。细胞作为生命组成的基本单位,了解其相关的生物行为及其规律与本质,对于揭示生命的......