发布时间:2020-10-06 16:23 原文链接: 激光雷达:从光电技术角度看自动驾驶(二)

大气衰减(在所有天气条件下)、空气中粒子的散射以及目标表面的反射率都与波长有关。由于有各种各样可能的天气条件和反射表面,对于这些条件下汽车激光雷达波长的选择来说是一个复杂的问题。在大多数实际情况下,905 nm处的光损失更小,因为在1550 nm处的水分的吸收率比905 nm处要大。1

光探测器的选择

只有一小部分脉冲发射的光子可以到达光电探测器的有效区域。如果大气衰减沿脉冲路径不变化,激光光束发散度可忽略不计,光斑尺寸小于目标,入射角垂直于探测器且反射体是朗伯体(所有方向均反射),则光接收峰值功率P(R)为:

P0是发射激光脉冲的光峰值功率,ρ是目标的反射率,A0是接收器孔径面积,η0是光学系统透过率,γ是大气消光系数。

该方程表明,随着距离R的增加,接收功率迅速减小。为了合理选择参数,R=100 m,探测器的活动区域上返回光子的数量大约是几百到几千,而通常发射的光子超过1012。这些回波光子与背景光子同时被探测,而背景光子没有任何有用信息。

采用窄带滤波器可以减少到达探测器的背景光,但不能减少到零,背景光的影响使检测动态范围减小,噪声(背景光子拍摄噪声)增大。值得注意的是,典型条件下地面太阳辐照度在1550 nm处小于905 nm。

飞行时间(ToF)激光雷达的基本原理示意

在一辆汽车周围360°×20°的区域内创建一张完整的3D地图需要一束经过光栅分光后进行扫描,或多束激光束扫描,再或者将光束整个覆盖住需要的范围并收集返回的点云数据。前者被称为扫描(scanning)激光雷达,后者称为闪光(flash)激光雷达。

扫描激光雷达有几种方式。第一种方式,以Velodyne为例(San Jose, CA),在顶部安装激光雷达平台,该雷达以300~900 rpm的速度旋转并发射出64路905 nm激光的脉冲。每束光束都有一个对应的雪崩光电二极管(APD)探测器。较类似的另一方法是使用旋转的多面镜,每个面的倾斜角度略有不同,从而以不同的方位角和斜角引导反射单个脉冲光束。这两种设计中的机械运动部件都有外部驾驶环境恶劣时的故障风险。

滨松新型百米级自动驾驶激光雷达探测器

16ch 硅APD S14137-01CR

第二种更紧凑的扫描激光雷达,其方法是使用一个微型微机电系统(MEMS)振镜,以二维的方向电引导出一束或多束光束。虽然在技术上仍然有运动部件(振荡镜),但振荡的幅度很小,频率也很高,足以防止MEMS振镜和汽车之间的机械共振。然而,振镜的几何尺寸限制了它的振荡幅度,这就使得视角变得有限——这是MEMS方法的一个缺点。然而,这种方法由于成本低、可实现度高而受到人们的关注。

滨松最新MEMS Mirror产品

刚刚在慕尼黑上海光博会中展出

光学相控阵列(OPA)技术,是第三种参与竞争的激光雷达技术,它以可靠的“固定部件”设计而日益流行。它由相干光照明的光学天线组成的阵列构成。光束转向是通过独立地控制每个单元发光时的相位和振幅来实现,从而于远场处干涉产生理想照明方向,实现从单光束到多光束的变化。不幸的是,光的损失限制了各种OPA组件的可用范围。

闪光激光雷达将目标场景中充满光,而照明区域与探测器的视场相匹配。探测器是探测光学焦平面上的APDs阵列。每个APD独立测量其上图像目标特征的ToF。这是一种真正的“不移动部件”的方法,其中切线方向(垂直、水平)分辨率受到二维探测器像素尺寸的限制。

然而,闪光激光雷达的主要缺点是回波光子数量:一旦距离超过数十米,返回光的数量就太少,无法进行可靠的探测。如果不是直接用光覆盖所有探测环境而是采用结构光的形式(例如点阵形式),且牺牲一定的切线分辨率,则可以提高回波光强度。此外,垂直腔面发射激光器(VCSELs)使得在不同方向同时发射数千束光束的出射成为可能。

滨松可用于激光雷达的光半导体探测器对比

报告:面向自动驾驶Lidar的核心半导体器件介绍

摆脱ToF法的限制

ToF激光雷达由于其回波脉冲较弱、探测部分电子学设计的宽带较宽而容易受到噪声的影响,而阈值触发则会产生Δt的测量误差。因此,调频连续波(FMCW)激光雷达是一种很有意义的替代方法。

在FMCW雷达或啁啾调制雷达中,天线连续发射频率被调制的无线电波。例如,随着时间T从ƒ0线性增加到ƒmax,然后随着T从ƒmax线性减小至ƒ0。如果波在一定距离内的移动物体上反射回发射点,其瞬时频率将与该瞬间发射的无线电波不同。这一差别由两个因素导致:到物体的距离及其相对径向速度。可以通过电子测量方法得到频差,同时计算物体的距离和速度(见下图)。

在啁啾雷达中,通过电子测量fB1和fB2,可以确定与反射目标的距离及其径向速度。

在啁啾雷达的启发下,FMCW激光雷达可以通过不同的方式获得。在最简单的设计中,人们可以啁啾地调节照亮目标的光强。这个频率受FMCW雷达载波频率的相同规律(例如多普勒效应)的影响,返回的光被光探测器探测到并恢复调制频率,输出被放大并与本身振荡频率混频从而允许测量频移,并由此计算出目标的距离及其速度。

但是FMCW激光雷达有一定的局限性,与ToF激光雷达相比,它需要更多的计算能力,因此在生成全三维环绕图时速度较慢,而且测量精度对啁啾时调制时的线性度程度非常敏感。

虽然设计一种功能完善的激光雷达系统具有挑战性,但这些挑战都不是不可克服的。随着研究的继续,我们越来越接近于大多数汽车生产结束后就能够完全自动化的时代。


相关文章

西安理工大学科研团队实现对斜程能见度精确测量

记者近日从西安理工大学获悉,该校激光雷达科研团队在斜程能见度测量技术上取得突破。他们提出了一种激光雷达结合辐射传输模式的方法,突破了目前的斜程能见度测量技术瓶颈,实现了精确测量。相关成果刊发在《光学学......

突发情况!美国众议员敦促拜登政府限制中国激光雷达公司,4家公司被点名

美国众议院中国事务特别委员会的议员敦促拜登政府调查中国激光雷达行业,并决定将哪些公司列入政府限制实体清单。激光雷达技术是一种遥感技术,被广泛应用于自主系统和机器人技术,包括无人机和自动驾驶汽车。立法者......

科学家攻克激光雷达抗干扰和高精度并行探测世界性难题

北京大学电子学院王兴军教授课题组-常林研究员课题组在两年攻关的基础上,研制出一种全新的硅基片上多通道混沌光源,提出了一种基于混沌光梳的并行激光雷达架构,攻克了激光雷达抗干扰和高精度并行探测这两个世界性......

王兴军课题组攻克激光雷达抗干扰和高精度并行探测难题

北京大学电子学院王兴军教授课题组-常林研究员课题组在两年攻关的基础上,研制出一种全新的硅基片上多通道混沌光源,提出了一种基于混沌光梳的并行激光雷达架构,攻克了激光雷达抗干扰和高精度并行探测这两个世界性......

激光雷达,轮到我们卡美国脖子了?

继芯片之后,激光雷达成为汽车产业链的又一热门词汇。2月6日和7日,激光雷达企业速腾聚创先后对外宣布,获得一汽丰田和赛力斯量产订单。这是国产激光雷达首次进入以严格、精细著称的丰田供应链体系。此前,头部激......

Ouster和Velodyne完成合并,激光雷达企业决战2024年

本周,一家新的激光雷达巨头正式诞生。当地时间2月13日,激光雷达制造商Ouster和Velodyne表示,双方已经成功完成了“对等合并”(mergerofequals),此次合并于2月10日生效,公司......

中国在全球汽车激光雷达市场领先

全球知名市场研究与战略咨询公司YoleIntelligence近期发布了《2022年汽车与工业领域激光雷达报告》。报告称,中国在全球汽车激光雷达市场中处于领先地位,来自中国的供应商成为这一领域的佼佼者......

大学动态:相干测风激光雷达重大突破

从中国科学技术大学获悉,该校地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面取得重大突破,首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据悉,这是迄今为止有报道的全球最高精度的风......

特斯拉法务副总裁离职,集中一点,登峰造极

美国激光雷达公司来特斯拉挖宝了!4月21日周三,由于从特斯拉(TSLA.US)和英特尔(INTC.US)分别挖角到高管,美国激光雷达公司LuminarTechnologies(LAZR.us)股价盘中......

上海学者在双波长海洋激光雷达研究领域取得新进展

中国科学院上海光学精密机械研究所在用于海洋后向散射和衰减垂直剖面参数观测的双波长海洋激光雷达研究中取得进展。研究团队研制成功配备了486nm蓝光波段激光的雷达设备,可满足同时兼容近岸水体和大洋水体的探......