发布时间:2020-10-12 14:01 原文链接: 从有源相控阵天线走向天线阵列微系统(一)

本文围绕高分辨率对地微波成像雷达对天线高效率、低剖面和轻量化的迫切需求 , 分析研究了有源阵列天线的特点、现状、趋势和瓶颈技术 , 针对对集成电路后摩尔时代的发展预测 , 提出了天线阵列微系统概念、内涵和若干前沿科学技术问题 , 分析讨论了天线阵列微系统所涉及的微纳尺度下多物理场耦合模型、微波半导体集成电路、混合异构集成、封装及功能材料等关键技术及其解决途径 , 并对天线阵列微系统在下一代微波成像雷达中的应用进行了展望 。

 

1、引言

 

中国高分辨率对地观测系统重大专项是国家下达的一项重大科研项目 . 高分辨率对地微波成像雷达是高分辨率对地观测系统重大专项重要组成部分 . 微波成像雷达不仅能提供高分辨率的地面静止目标的结构形状信息 , 而且能实时探测地面、空中或空间的运动目标 . 微波成像雷达系统能力与目标的电磁特性、天线理论和工程及信号处理技术等密切相关 。

 

相控阵技术已成为雷达发展的主流 , 包括高分辨率对地微波成像雷达 . 为了有效地缓解微波成像雷达高分辨率与宽观测带之间的矛盾 , 有源阵列天线是理想的选择 , 并且天线的高效率、大孔径、低剖面和轻量化是工程应用的急需 , 也是天线工程师永恒的追求 . 天线高效率能让天线获得发射、接收双程得益 , 是星载微波成像雷达优先追求的重要参数 ; 天线大功率孔径积是微波成像雷达的基本要求 ,天线大孔径是获得雷达大功率孔径积最简洁的方式 ; 由于卫星发射受到火箭整流罩包络的限制 , 只有较低剖面厚度天线的折叠 , 才能得到较大的天线孔径 ; 有源阵列天线轻量化是降低发射运载和卫星成本最有效最直接的途径 。

 

综上所述 , 高分辨率微波成像雷达的性能参数与有源阵列天线的频率特性、带宽特性和极化特性密切相关 ,如表 1 所示 . 为了提高天线效率、减小天线阵面尺寸 , 采用多波段、多极化共孔径天线技术 ; 为了缓解高分辨率与宽观测带之间的矛盾 , 提高观测带宽度 , 采用多通道技术 . 在高效率、低剖面和轻量化条件下 , 实现天线共孔径和多通道等技术 , 大大地增加有源阵列天线的研究难度 , 需要从有源阵列天线系统架构层面进行折衷、分析和优化 , 也要从理论和设计方法上进行研究 。

 

表 1 天线对微波成像雷达性能影响关系分析

1

2、有源阵列天线特点和瓶颈

 

在集成电路摩尔 (Moore) 时代 , 有源阵列天线技术是集现代相控阵天线理论、半导体技术及光电子技术为一体的高新技术产物 , 例如 , 有源阵列天线中的 T/R 组件、延时放大组件等 . 有源阵列天线有成千上万个 T/R 组件 , 每个 T/R 组件都是由发射链路中的放大器和接收链路中的低噪声放大器 , 以及移相器等构成 . 随着半导体技术的发展 , 单片微波集成电路 (monolithic microwave integrated circuit,MMIC) 技术、射频微机械电子系统 (radio frequency microelectro mechanical systems, RF MEMS) 技术和集成封装技术为高性能、高可靠、小型化和低成本 T/R 组件的实现提供了技术途径 . 尤其是集成电路技术正在从窄带单功能向宽带多功能、从单片集成电路 (monolithic integrated circuit, MIC) 向片上系统 (system on chip, SoC), 以及从多芯片组件 (multi-chip module, MCM) 向多功能系统级封装(system in package, SiP) 方向发展 , T/R 组件的结构形式由砖块式 (brick) 发展到瓦片式 (tile), 这些都极大地推动有源阵列天线技术的发展 。

 

有源阵列天线技术在高分辨率微波成像雷达应用时 , 特别适合多模式快速切换、波束赋型和波束扫描 , 实现微波成像雷达多种模式工作 , 使雷达具有快速响应、自适应和故障弱化等能力 . 根据微波成像雷达的特点和技术的发展 , 最值得重视的是有源阵列天线以下几个特征 。

 

2.1、有源阵列天线技术是提升微波成像雷达性能的重要途径

高分辨、多波段、多极化、多平台是合成孔径成像雷达的重要发展方向 , 有源阵列天线技术在高分辨率成像和多种模式实现上 , 具有显著的优势 。

 

不同装载平台的微波成像雷达都非常关注天线孔径与发射平均功率乘积 . 众所周知 , 合成孔径雷达的方位分辨率是天线方位向尺寸的一半 , 从这点来看 , 天线尺寸越小越好 , 而大天线孔径是降低合成孔径雷达造价的重要途径 , 人们期望天线尺寸尽可能大 , 发射功率尽可能低 , 因此 , 实现高分辨率和采用大天线孔径是一对矛盾 . 有源阵列天线有效地缓解了这一矛盾 , 低分辨率时 , 可以有效地利用天线大孔径 , 高分辨率时 , 通过相位加权展宽天线波束等效缩短天线孔径尺寸 。

 

有源阵列天线的运用 , 使星载微波成像雷达扫描成像 (ScanSAR) 模式距离向的观测带宽度、聚束成像 (SpotlightSAR) 模式的波束指向精度都大幅提高 . 有源阵列天线波束扫描灵活、无惯性和速度快的特点使微波成像雷达能够实现精确运动补偿 , 保障高分辨率成像的实现 , 从而提高雷达成像质量 。

 

2.2、有源阵列天线有利于提高微波成像雷达抗干扰能力

微波成像雷达的目的是获得被选择区域情报信息 , 对雷达干扰的目的是阻止、混淆、或迟时获得被选择地域的信息 . 对常规情报或跟踪雷达来说 , 干扰机的有效性一般用雷达作用距离的减小量来度量 . 对于微波成像雷达 , 干扰机就是阻止一个区域图像信息的侦察 , 干扰机的有效性 , 一般用系统灵敏度的降低量来度量 。

 

雷达抗干扰目的就是减小对雷达的干扰效果 , 为了提高抗干扰能力 , 通常采用的如提高雷达有效辐射功率、低或超低副瓣天线、大时宽带宽乘积信号、双 / 多基地雷达系统等方法 , 这些对提高雷达抗电子干扰能力是至关重要的 . 对有源阵列天线来说 , 由于空间波束 ( 功率 ) 合成的高效率 , 天线具有高增益、低副瓣电平能力 , 有利于提高天线辐射总功率 ; 由于天线的每个辐射单元的幅度和相位可以独立控制 , 利用空间滤波技术 , 实现天线自适应副瓣置零 , 抑制干扰与杂波 ; 同时 , 也有利于实现辐射能量管理 , 合理使用辐射能量 , 提高雷达抗干扰自卫距离 。

 

2.3、有源阵列天线有利于实现微波成像雷达的标准化、模块化

 

对雷达性能要求的提高和雷达工作环境的恶化 , 使雷达系统的构成越来越复杂 , 研制周期加长 , 研制和生产成本上升 , 技术风险增加 . 为适应这种形势 , 有源阵列天线是一条重要的出路 . 有源阵列天线可采用大量一致的标准组件 ( 例如 T/R 组件、延时放大组件等 ), 这利于雷达的标准化、模块化和降低生产成本 。

 

诚然 , 有源阵列天线技术是一种会赋予微波成像雷达 “ 新生 ” 的技术 , 但是 , 就其技术的本身尚有天线的剖面厚度厚、效率不高和重量较重等诸多难度很大的问题需要解决 , 这些技术瓶颈必将限制新一代高分辨微波成像雷达技术的发展 . 随着集成电路技术按照摩尔定律不断纵深发展 , 微电子、光电子、微机电等基础技术能力得到了快速发展 , 但是进一步向纳米级集成发展的步伐受到技术和成本的约束越来越大 ; 有源阵列天线的发展急需一种新的技术路线来满足微波成像雷达对大孔径、高效率、低剖面和轻量化天线的需求 .与此同时 , 随着跨界系统架构和软件算法的兴起 , 跨界融合形成新型能力以满足下一代潜在需求成为创新热点.后摩尔时代的到来 , 需要系统架构技术与微纳电子技术紧密结合和融合创新 , 因此 , 就有源阵列天线而言 , 天线阵列微系统技术是一项多学科交叉的前沿新兴技术 , 将是后摩尔时代的产物 。

 

3、有源阵列天线与天线阵列微系统

 

3.1、有源阵列天线发展现状

 

有源阵列天线技术的发展 , 不断地推动通信、雷达 , 以及个人消费电子等系统小型化、集成化和低功耗 . 传统的有源阵列天线是砖块式 (brick) 结构 , 它是由无源天线阵面、多种功能模块与无源天线集成在一起的 . 针对新一代信息系统的微型化、多功能、高性能、低功耗、低成本等多种需求 , 并随着半导体技术以及先进封装工艺的发展和驱动 , 出现了片上天线 (antenna on chip, AoC) 、封装天线(antenna in package, AiP) 、系统级封装 (SiP) 等新型天线 . AoC 和 AiP 分别属于 SoC 和 SiP 概念的范畴 . 在这几种天线形式之外 , 还出现了瓦片式天线 (tiled antenna). 它们之间的关系如图 1 所示 。

 

 

2

图 1 (网络版彩图) 几种有源阵列天线之间的关系示意图

 

AoC 是通过半导体材料与工艺将天线与其他电路集成在同一个芯片上 , 是基于硅基工艺的片上天线 . AoC技术可以以更低的系统成本来提高天线的性能和功能 , 但是由于使用相同的材料和工艺 ,难以使每个类型的电路性能达到最优 , 进而导致天线系统性能难以达到最优 . 同时 , 由于硅片本身的低电阻率、高介电常数的特性 , 天线辐射时很大一部分能量集中在硅基片内 , 从而天线辐射效率和增益一般都较低 . 常规硅基工艺的片上天线的增益一般小于 −5 dBi, 辐射效率只有 5%, 甚至更低 .采用质子注入 、微机械加工、人工磁导体 ,以及介质透镜等技术 , 在一定程度上提高了天线的增益或辐射效率 。