发布时间:2013-07-24 15:48 原文链接: 于军:从基因组生物学到精准医学

  今年是“人类基因组计划”宣布完成10周年。选择2003年结束这个计划是为了纪念美国沃森和英国克里克两位生物学家发现DNA双螺旋结构50周年,而沃森博士正是这个宏大计划早期的实际推动者之一。

  科学界往往以重要人物和他们的重要科学发现及技术发明为里程碑。基因组学应属于分子生物学范畴,其学科的真正起点,应该是1953年DNA双螺旋结构的发现和上世纪70年代初期DNA序列解读技术的发明。因此,也可以说“人类基因组计划”是50年来生命科学与技术发展的结晶。

  一次性解读全部人类基因的DNA序列正是在分子生物学如火如荼的上世纪80年代初提出的。1983年和1984年美国NIH(国立卫生研究院)和 DOE(能源部)分别组织了相关领域的科学家进行了启动大规模测序计划可能性的研讨,这就是“人类基因组计划”的酝酿阶段。1987年“人类基因组计划” 的智库发表了《测定和绘制人类基因组图谱》的报告,“计划”进入真正的实施阶段。五年后,第一代荧光自动测序仪问世,“计划”则进入真正的数据获取阶段,并最终耗时15年完成。

  路线图

  “人类基因组计划”是一个预计斥资30亿美元的大科学项目,在30年后的今天来看也是个不小的数字,可以与1939年美国斥资20亿美元制造原子弹的“曼哈顿计划”媲美。据最新估计,“人类基因组计划”所创造的经济效益已经达到一万亿美元。更重要的是,它的未来价值体现还在不断继续。

  早在“人类基因组计划”完成之前,时任NIH基因组研究所所长考林斯就提出了“基因组结构到基因组生物学,再到疾病生物学和医学科学”的路线图,意在将这一计划所产生的成果转移到经济和社会效益上。

  2011年美国基因组学与生物医学界的智库又发表了《迈向精准医学:建立生物医学与疾病新分类学的知识网络》,宣示运用生物医学和临床医学研究的交汇,来编织新的知识网络。

  华盛顿大学退休教授欧森博士是既参加起草了1987年“人类基因组计划”宣言性报告,也参加了精准医学报告的撰写。他对精准医学的解释是:“个性化”其实就是医学实践的正常形式,而分子水平信息的使用会使医学更精准,因而是恰如其分的目的性描述。

  学医出身的博士后,时任NIH基因组研究所所长的格润,正在实践着他30年来的一贯思想:大科学项目一定要有始有终、以直接造福社会为目的。只有这样,主流科学家、政府、社会才能支持这样耗时十数年、耗资几十亿、集科学思想与技术集成为一体的大科学项目。

  精准医学相关的大项目已经规划好。《报告》直接建议“百万美国人基因组计划”、“糖尿病代谢组计划”等。就百万人基因组测序而言,其单纯DNA测序价格就在10亿美元以上。鉴于英国医学临床资源不仅规范而且丰富,首相卡梅伦去年斥资一亿英镑启动了“十万人基因组测序计划”。

  新境界

  基于基因结构和序列变化的基因组学研究无疑已经转入到生物学和医学核心命题的研究。基因组学技术和规模化的特征将会延续并发扬,大数据、复杂信息、新概念和知识等等,都在不断地催生新的思维境界和新的思考。从“DNA到RNA再到蛋白质”和各类“组学”研究,最终将是一种整合性、更高层次的消化和理解。20多年前美国科学家胡德提出的“多系统生物学”开辟了新的思维和方法,但是他并没有将其研究内容具体化。

  从基因组学(以DNA序列为研究主体)到基因组生物学(以生物学命题为研究主体),再到基于谱系的基因组生物学(以生物谱系,如哺乳动物为研究主体),是基因组学的“凤凰涅槃”,也符合生物学的发展规律。

  基因组生物学目前至少有五个层面的思考。第一是“信息流”,延续“中心法则”的思维框架,包括遗传学和分子进化的所有研究内容;第二是“操作流”,包括生理学、细胞生物学和分子生物学研究的主要生物学命题;第三是“平衡流”,主要是药理学和生物化学等学科的精华;第四是“分室流”,它涵盖发育生物学、解剖学、生命起源等领域所涉及的核心科学问题;第五是“可塑流”,研究表型和行为的可塑性,前者囊括生态学与环境生物学的研究内容,后者包括神经生理和心理学等研究内容在分子水平的命题。

  生命科学研究的真正挑战在于如何将这些基于不同概念,由不同技术和方法获取,被不同领域科学家们所收集,停留在各个不同理论和信息层面上的知识编织成一个有机的网络。生物医学研究与临床医学实践的精准度也正是由这些学科前沿的发展所决定。

  中国使命

  中国科学家在1999年适时参加了“人类基因组计划”,并承担了1%的任务。后来还参加了相关的国际性基因组研究计划,比如“人类单倍体型图计划” 等。这些科学计划似乎并没有在中国科学界引起“波澜”,中国生命科学界迄今也没有启动足够规模、具有划时代意义的大项目,也没有启动能够让百姓大众振奋的大计划。

  生物医学的发展趋势一目了然。要实现精准,首先是测量技术。DNA测序已经精确到单个核苷酸,因此单细胞和单分子(或超微量)技术,将会引领未来体内检测技术的发展。DNA测序、质谱、微流控、各类影像、微纳加工等技术的国内空白亟待填补。

  其次是数据获取和综合挖掘能力。中国超级计算机运算能力可以成为领先国际的水平,但实际的领域性应用却常常落后于国际同行水平。

  美国的NCBI和欧洲的EBI都是有着近30年历史的生物信息中心,我国没有;国际性大型文献收集和检索库都在不断扩张和更新,我国没有。

  第三是临床和自然资源的积累,也许我国可以从头开始。最后是大项目的策划和实施,我国显然还正在研讨和吸取经验。

  (作者系中国科学院北京基因组研究所副所长)

相关文章

一生中患病的几率或可预测,十种慢性病遗传风险估算更接近临床

通过分析基因组中数百万个微小的遗传差异,就可预测一个人一生中患某种疾病的几率。在过去的10年中,研究人员为数十种疾病制定了风险评分,希望有一天患者能利用这些信息来降低患病风险。在《自然·医学》杂志最新......

揭秘基因组“暗物质”

记国家自然科学基金重大研究计划“基因信息传递过程中非编码RNA的调控作用机制”在人类遗传信息传递过程中,非编码RNA不参与编码蛋白质,占全部RNA的98%,如同宇宙中神秘的“暗物质”,是生命活动调控的......

构建水稻基因组倒位变异图谱

近日,中国农业科学院深圳农业基因组研究所联合国内多家单位发布了迄今为止最大的水稻群体水平倒位变异图谱,并挖掘获得了新的水稻耐热优异等位基因,该研究对水稻育种改良具有重要意义。相关研究成果发表在《科学通......

基因组精确注释新方法:增强子鉴定新技术

近日,中国农业科学院深圳农业基因组研究所动物功能基因组学创新团队研发出增强子鉴定新技术。该技术与传统技术相比,平均分辨率提高了约10倍,为基因组的精确注释提供了新方法。相关研究成果发表在《核酸研究》(......

沈阳自动化所与中国医科大学签署合作协议

12月11日,中国科学院沈阳自动化研究所与中国医科大学合作签约仪式在沈阳自动化所举行。沈阳自动化所副所长李硕与中国医科大学党委常委、副校长曲波分别代表双方签署协议。沈阳自动化所所长史泽林表示,前期双方......

迈向CRISPR2.0,下一代基因编辑技术方兴未艾

美国食品药品监督管理局(FDA)本月稍早时间宣布,批准CRISPR/Cas9基因编辑疗法Casgevy上市,用于治疗12岁及以上镰状细胞贫血病患者。这是FDA批准的首款CRISPR基因编辑疗法。而11......

瑞孚迪:改变千万新生命——全基因组测序在新生儿筛查中的应用

导读:这项技术可以及早发现那些可能对患儿生命产生重大影响的罕见疾病。     瑞孚迪的这项首创研究证明了全基因组测序在对看似健康的新生儿的筛查中存在重......

科学家解析百余“神奇蘑菇”基因组以培育新品种

科学家收集了几十种“神奇蘑菇”的基因组数据,以了解驯化和培养是如何改变它们的,从而培育新品种蘑菇。相关研究近日发表于《当代生物学》。裸盖菇的商业品种缺乏遗传多样性,因为它们被驯化为人类使用。而澳大利亚......

重大突破!首款可见光波长飞秒光纤激光器研制成功

技术进步为生物医学应用等领域可靠、紧凑的超快激光器奠定了基础。研究人员最近开发出了第一款能够在电磁波谱可见光范围内产生飞秒脉冲的光纤激光器。这一进步为各种生物医学和材料加工应用带来了潜力。这些激光器的......

万种原生生物基因组计划取得阶段性进展

原生生物(Protist)是一大类单细胞真核生物的集合,包括单细胞真核藻类和原生动物等,组成了原生生物界。原生生物具有高度多样性,广泛分布于各类水环境中,在生态平衡、物质和能量循环、环境健康、动植物疾......