发布时间:2013-10-08 14:28 原文链接: 英国科学家实验碳捕获与储存监测技术


位于北海的海上石油钻井平台最终将成为储存碳排放的场所

  碳捕获与储存技术(CCS)是减缓温室气体排放对全球气候和海洋影响的一种方式。通过碳捕获与储存技术(CCS),发电厂等工矿企业产生的二氧化碳可以被注入曾经储存石油和天然气的岩层中。

  在欧洲北海油气田,有很多废弃的海上石油气钻井平台,而CCS可以赋予这些废弃的钻井平台以新的活力和使用价值。

  目前全球已经有几个试验平台成功地将二氧化碳注入了地层深处储存。不过目前人们普遍关注的问题是如何控制和管理这些储存在深处的二氧化碳。能够检测二氧化碳确实被安全地锁定在会渗漏的岩层里,才是证明碳捕捉与储存技术确实有效的重要一步。

  据英国广播公司(BBC)近日报道,就碳捕获技术来说,监测成本过高是推广这一技术的主要障碍。目前人们采用的主要监测技术是地球物理地震成像技术,但该技术需要在很长时间里进行持续监测。

  英国杜伦大学的乔恩?格鲁亚斯(Jon Gluyas)教授与谢菲尔德大学、巴斯大学的一些同仁正在合作开发更为经济的碳储存监测技术,他们希望利用自然界的宇宙放射线对岩石深处进行探测,就跟医学里给人体进行X光检查一样。

  他们采用的监测技术是μ子成像技术。μ子是在地球上空的大气层中,宇宙射线撞击氧原子和氮原子之后产生出的一种新的轻子。μ子是一种带电粒子,与电子较为相似,但其重量却是后者的200倍。

  研究团队已经开始在地层深处部署对μ子十分敏感的探测仪。μ子成像技术之前已经被人们用来探测火山口内的岩浆分布,以及日本福岛核电站内部的损坏情况。在CCS技术中,μ子成像技术可以侦测二氧化碳在地下的分布状况。

  研究小组在北海选择了一处名为包尔比的矿井建立了一个物理实验室。该井深达1千米,并有一个长廊,可延伸至地下 7千米。他们在这里放置了一个μ子探测器,用于监测来自大气层的、穿越了北海和1千米岩层的μ子。随着潮涨潮落,μ子通过的海水深度也会有所变化。这些变化将会被探测器捕捉到。

  格拉亚斯教授称,该实验目前只处于起步阶段,有望在2015年完成最终布置工作。如果成功的话,2020年可以形成实地可操作的方案。

相关文章

生态环境部、国家统计局关于发布2021年电力二氧化碳排放因子的公告

名称生态环境部、国家统计局关于发布2021年电力二氧化碳排放因子的公告索引号000014672/2024-00149分类应对气候变化发布机关生态环境部国家统计局生成日期2024-04-12文号公告20......

二氧化碳加氢制碳一产物研究有了新进展

近日,中国科学院大连化学物理研究所研究员邓德会团队,应邀发表了关于二氧化碳加氢制碳一产物选择性调控的综述文章。该综述系统介绍了二氧化碳加氢制碳一产物的研究进展,并对二氧化碳加氢的选择性调控策略、存在的......

湿地甲烷和二氧化碳排放量增加取决于土壤碳底物

甲烷(CH4)与二氧化碳(CO2)的相对排放量是探究气候变暖影响湿地温室气体排放的关键因素之一。为深入理解CH4与CO2排放的温度敏感性,中国科学院南京土壤研究所梁玉婷团队与中国科学院地球环境研究所陈......

16世纪大气二氧化碳为何下降?人类活动变化导致

施普林格·自然旗下学术期刊《自然-通讯》最新发表一篇地球科学论文指出,人类活动的变化或导致16世纪大气二氧化碳含量下降,原因是公元1450-1700年新旧大陆交流期间美洲大规模土地利用的变化。这项研究......

新思路!低浓度二氧化碳实现直接电解转化

二氧化碳电解能够将烟道气等工业废气中的二氧化碳转化为高值燃料和化学品,是一项具有广阔应用前景的负碳技术。近日,中国科学院大连化学物理研究所研究员汪国雄和研究员高敦峰团队与大连工业大学安庆大教授团队合作......

研究实现二氧化碳加氢高选择性制低碳烯烃

日,中国科学院大连化学物理研究所李灿院士和研究员王集杰等在二氧化碳加氢制低碳烯烃方面取得新进展。团队开发了ZnZrOx/SSZ-13串联催化剂,实现了二氧化碳到低碳烯烃的高选择性生成,其低碳烯烃选择性......

大连化物所等提出低浓度二氧化碳直接电解转化新策略

近日,中国科学院大连化学物理研究所催化基础国家重点实验室碳基资源电催化转化研究组研究员汪国雄和高敦峰团队,与大连工业大学教授安庆大团队合作,在二氧化碳(CO2)电解制备燃料和化学品研究中取得新进展,实......

替代性蛋白质或为碳减排开辟新天地

荷兰科学家研究认为,到2050年,用替代性蛋白质取代50%的动物产品,可以腾出足够的农业用地生产可再生能源(其能量相当于今天的燃煤发电),同时从大气中去除大量二氧化碳。相关研究近日发表于环境科学期刊《......

催化组合将二氧化碳转为碳纳米纤维

美国能源部布鲁克海文国家实验室和哥伦比亚大学研究人员联合开发了一种耦合电化学和热化学反应的新策略,可将强效温室气体二氧化碳(CO2)转化为碳纳米纤维。这些材料具有广泛的独特性能和许多潜在的长期用途。研......

“十三五”:超额完成二氧化碳减排目标!

为全面有效落实《联合国气候变化框架公约》及其相关决议的要求,12月29日,中国正式向《公约》秘书处提交《中华人民共和国气候变化第四次国家信息通报》和《中华人民共和国气候变化第三次两年更新报告》。两份报......