发布时间:2014-02-14 10:52 原文链接: NatChemBiol:科学家揭示细菌产生耐药性的新型机制

  多重耐药性细菌的出现是目前世界研究者关注的一个影响人类健康的大问题,然而开发新型抗生素却非常耗时,因此治疗耐药性细菌的感染迫在眉睫;近日,来自图宾根大学等处的研究人员的研究成果或许可以帮助开发有效的疗法来抵御耐药性细菌的感染,相关研究刊登于国际杂志Nature Chemical Biology上。

  研究者人员在文中发现,耐药性细菌-铜绿假单胞菌可以循环利用其细胞中的原料物质,这样就可以避免细菌被广谱抗生素磷霉素杀死,利用细菌的这一机理,研究者就可以开发出新型途径来杀灭细菌。

  假单胞菌属和不动杆菌属细菌可以感染患者伤口,从而引发危害生命的肺炎、脑膜炎和败血症,而且细菌对多种抗生素均有耐药性,细菌的细胞壁是由肽多糖组成,肽多糖可以形成大型的网络从而赋予细菌细胞一定的稳定性,当然这也可以作为新型抗生素的开发靶点之一。

  磷霉素可以通过抑制细菌细胞早期肽多糖的合成来抑制细菌生长乃至杀灭细菌,但是研究人员发现,铜绿假单胞菌并不总是产生肽多糖的前体结构,细菌可以循环利用细胞中存在的肽多糖从而就免于被磷霉素作用。

  研究者随后进行研究,在铜绿假单胞菌中隔离两个新型基因,这两个基因和细菌细胞的循环过程和模式切换直接相关,这样就克服了细菌对磷霉素的内在耐药性。研究者Christoph Mayer表示,很不幸的是,在感染细菌的患者机体中是很难关闭这两个基因的,然而或许我们可以利用酶类来开发新型的靶向疗法。

  研究者目前已经开始了对磷霉素作用效率的优化,研究者认为,将抑制肽多糖的合适添加剂成分加入到抗生素中进行联合作用,或许可以对耐药性细菌进行有效的杀灭作用。

相关文章

有望治疗耐药菌感染,纳米“光镊”可捕获和操纵噬菌体

近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《......

核糖体结合“预组织”的抗生素克服了超级细菌

哈佛大学和其他地方的研究人员创造了一种合成抗生素,可以非常有效地对抗困扰许多现代抗生素的抗菌素耐药机制。一篇新的《科学》论文提供了该抗生素的设计、合成和评估的详细信息,题为“一种预先组织用于核糖体结合......

核糖体结合“预组织”的抗生素克服了超级细菌

哈佛大学和其他地方的研究人员创造了一种合成抗生素,可以非常有效地对抗困扰许多现代抗生素的抗菌素耐药机制。一篇新的《科学》论文提供了该抗生素的设计、合成和评估的详细信息,题为“一种预先组织用于核糖体结合......

微型“龙卷风”为何能导致作物传染病扩散?

病原体和细菌不仅会使人类和动物生病,也会对植物造成严重破坏,每年造成全球农作物减产超过20%。近日,美国康奈尔大学科研团队在《科学进展》发表成果,通过使用高速摄像机拍摄真菌孢子的散播过程,揭示了健康植......

突破|新抗生素显著增强抑制耐药菌功效

细菌的抗生素耐药性正在使许多现代药物失效,甚至可能引起全球公共卫生危机。现在,美国哈佛大学研究人员开发的一种新抗生素克服了抗生素耐药性机制。据最新一期《科学》杂志报道,合成化合物克雷霉素(cresom......

突破|新抗生素显著增强抑制耐药菌功效

细菌的抗生素耐药性正在使许多现代药物失效,甚至可能引起全球公共卫生危机。现在,美国哈佛大学研究人员开发的一种新抗生素克服了抗生素耐药性机制。据最新一期《科学》杂志报道,合成化合物克雷霉素(cresom......

消除抗生素污染新方法,速率更高、产物更安全!

抗生素在环境中残留会给人类健康带来危害,而在许多抗生素中,包括青霉素、阿莫西林、头孢氨苄等在内的β-内酰胺类抗生素用量占比约为70%。围绕水中β-内酰胺类抗生素的降解难题,近日,中国科学院化学研究所研......

最新研究:一种新型抗生素有望战胜一类多重耐药菌

当地时间1月3日起,英格兰近五万名初级医生开始为期六天的罢工,就薪酬问题抗议。分析指出,新一轮罢工将会影响冬季医疗需求高峰期间的就诊体验。2023年,英国医疗系统工作者曾进行一系列罢工,要求提高薪资待......

蚂蚁也会用抗生素?神奇的马塔贝莱蚁

马塔贝莱蚁广泛分布于撒哈拉沙漠以南,其饮食范围很窄:它们只吃白蚁。它们的狩猎探险是危险的,因为白蚁士兵会保护它们的同类,并使用它们强大的下颌骨来战斗。因此,马塔贝莱蚁在狩猎时受伤是很常见的。一只马塔贝......

中国科学院:水中抗生素污染去除研究取得进展

环境中残留的抗生素及其引起的耐药基因传播,给人类健康带来危害。在众多种类抗生素中,β-内酰胺类抗生素(如青霉素、阿莫西林、头孢氨苄等)用量占比约为70%。目前常用的生物降解方法处理效率因抗生素分子本身......