发布时间:2014-12-22 09:42 原文链接: 美国研发公司颠覆传统锂电池:能量密度突破两倍

  过去20年间发生的科技飞跃令人瞠目结舌。计算机已经从功利主义的盒子转变为由金属和玻璃组成的线条明朗的矩形,且小到能够放在口袋里。现在的设备要强大得多,一款新型智能手表的计算能力比阿波罗登月飞船的都要强大。然而最流行的可充电电池锂离子电池也已经出现但电池技术停滞不前。

  由麻省理工学院创业团队在2012年春天创办的麻省固体能源公司(Solid Energy),于2014年10月下旬对外宣布其电池研发取得世界级突破,其2Ah的电池样品达到1337Wh/L的能量密度,超过苹果、三星,小米和特斯拉电池2倍,将颠覆20多年以来统治消费类电子产品和电动汽车的传统锂离子电池。这一项成果突破了目前世界最高记录,并由美国独立电池测试实验室A123公司验证。

  根据能源部,第一代锂电池使用石磨负极,第二代锂电池使用硅负极。第一代和第二代都属于锂离子电池。第三代锂电池会是“超越锂离子”用更高能量密度的金属负极。虽然很多第三代锂电池包括锂硫和锂空气电池离产业化还很远,因为他们在正极方面有很多根本上的问题,SE用已经产业化的锂钴氧(LCO)正极展示了1337Wh/L的2Ah的电芯能量密度。这是迄今为止最高的电芯能量密度。SE是一个电池材料创业公司,并不和传统的锂离子电池巨头竞争,而是开创一个新空间,第三代“超越锂离子电池”电池材料领域竞争。

  传统的锂离子电池采用石墨负极仅能达到少于600Wh/L的能量密度;先进的硅负极电池仅取得800Wh/L的能量密度,而超薄锂金属负极电池能超过1000Wh/L的能量密度。虽然目前许多锂金属负极电池例如锂空气、锂硫电池离实际应用还非常远,麻省固体能源公司使用成熟的锂钴氧正极,成功的在2Ah的电芯上实现了1337Wh/L的能量密度,并将在2016年大规模应用到消费类电子产品。

  同样体积,两倍的容量,同样容量,一半的体积,其成本仅为传统锂离子电池的80%。未来的手机将薄如信用卡,一次充电能用两倍长的时间。可穿戴式,比如智能手表的表带就是电池。电动汽车冲一次电能有500英里的航程。

  麻省固体能源公司致力于推动人类电子产品和电动汽车电池的颠覆,不做正极做负极。正极材料的研发创新周期很快,一般每年有5%的提升,但这是非常零散的因为不同的应用和企业选择不同的正极。在负极方面,创新相对来说要困难很多,一般每10年到20年才有一次大的突破。这也是为什么电池由负极决定属于哪一代。其专注于开发新一代负极材料并合不同的正极相匹配,包括磷酸铁锂,锂钴氧,和三元材料。未来希望成为一个材料公司将其专有的负极和电解液销售给更多的用不同正极的电池企业。目前已经和多个电池公司和消费类电子公司合作测试电池材料。

  目前电池行业有四种电池材料,正极,负极,电解液和隔膜。大部分电池材料企业做正极材料。领先的电池材料品牌包括三菱化学,日本化学,昭和电工,BASF,Celgar,Umicore和杉杉科技。负极主要是石磨为主,这是一种非常成熟的低成本的商品,能量密度很低。在负极提供商中,几乎没有技术差异,他们主要靠降低成本来竞争。正极材料主要是传统消费类电子产品用的高能量密度的锂钴氧(LCO)。但新出现的方向是非常多样和零散的,包括磷酸铁锂(LFP)和三元材料包括镍钴铝(NCA),镍钴锰(NCM),锰酸锂(LMO)等,针对不同的应用领域的需求比如高体积能量密度,高质量能量密度,高放电倍率,长循环寿命,良好的安全性能等,并且在同一个领域不同的企业也会有不同的配方和材料选择。比如一个手机和电动汽车对正极材料的需求是非常不一样的。电解液方面也是非常多样,分散的,不同的领域,不同的企业有自己的配方,但大部分都大同小异。隔膜方面,一些核心技术由几家日本和美国企业掌握,他们收取比较高的利润。虽然他们继续主导高端市场,他们的优势和垄断地位也在逐渐消失,因为很多新的企业很快掌握他们的先进技术。

  Solid Energy不在拥挤和零散的正极空间竞争,但他的材料(负极和电解液)是与大多数正极材料兼容。SE省去了隔膜,从而使传统隔膜公司失去他们的优势。SE主要在电解液和负极上竞争。SE的超薄金属负极能使的电池设计达到几乎“无负极”的状态,提供前所未有的高能量密度,这是SE和其他电池材料公司的最大不同点和优势。而SE的负极必须需要SE的电解液才能稳定使用。SE的负极和电解液是一套的。正极材料的研发创新周期很快,一般每年有5%的提升,但这是非常零散的因为不同的应用和企业选择不同的正极。在负极方面,创新相对来说要困难很多,一般每10年到20年才有一次大的突破。这也是为什么电池由负极决定属于哪一代。SE专注于开发新一代负极材料并合不同的正极相匹配,包括磷酸铁锂,锂钴氧和三元材料。

  麻省固体能源公司拥有麻省理工学院相关ZL的全球独家使用权并获得了一系列知名的科技奖项,包括:美国R&D100奖(科技创新的奥斯卡),美国能源部清洁能源奖,麻省清洁能源委员会奖,麻省理工清洁能源奖。

  由麻省理工学院创业团队在2012年春天创办,公司核心技术是由胡启朝博士(2012年福布斯30位30岁以下杰出科学家之一)和MIT唐纳德。赛德维教授(2012年时代周刊世界最有影响力的100人之一)共同研发的固体聚合物离子液(SPIL)锂金属电池材料。

相关文章

华为公布新专利“迪王”15GWh项目明年5月投产钠电赛道再升温

钠电池产业在“从0到1”的过程中大踏步前进。国家知识产权局官网显示,华为技术有限公司于4月2日公布一项名为“钠电池复合正极材料及其应用”的发明专利,申请公布号为CN117810379A,专利申请日为2......

下一代锂硫电池或在5分钟内完成充电

澳大利亚科学家开展的一项新研究表明,下一代锂硫电池有望在5分钟内完成充电,而不像目前这样需要数小时。这一突破有可能彻底改变储能技术,推动高性能电池系统的发展,为消费电子产品和电网应用储能系统提供性能更......

柔性多孔框架材料可实现乙烷乙烯的高效分离

近日,西安交通大学化工学院杨庆远课题组开发的系列柔性多孔框架材料,可实现乙烷乙烯的高效分离,该研究成果发表在《美国化学会志》上。据了解,这类柔性多孔材料对乙烷表现出独特的“门控”效应,即在乙烷分子的作......

【能源材料研究】赛默飞一站式学科热点解决方案

国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,推动高校、职业院校更新置换先进教学及科研技术仪器,提升教学与科研水平您是否还在为填报仪器升级计划而犯难?来了!来了!赛默飞带着一站式学科热点升......

新能源汽车浪潮下的锂电池实验室装备革新

2023年,中国汽车行业蓬勃发展,特别是新能源车市场迎来了显著增长,为2024年的新起点带来了希望。在今年的两会上,锂电产业链成为了热议话题。国务院总理李强在政府工作报告中多次提及锂电产业链上下游的重......

宁德时代获电池单体及其制造方法发明专利授权

宁德时代(300750)新获得一项发明专利授权,专利名为"电池单体及其制造方法、制造设备、电池及用电装置",专利申请号为CN202110873211.6,授权日为2024年3月12......

科学家研发出新型散热材料金刚石膜,可将电动汽车充电速度提升五倍

近日,德国弗劳恩霍夫研究所的科学家们取得了一项重大突破,他们利用超薄金刚石膜成功降低了电子元件的热负荷,这一技术有望将电动汽车的充电速度提升五倍。这项技术的关键在于金刚石的优异导热性和电绝缘性。传统的......

重大材料突破!我国科研人员研制出高抗疲劳3D打印钛合金

中国科学院金属研究所介绍,该所科研人员近期制备出具有高抗疲劳性能的3D打印钛合金材料,未来有望在航空航天领域发挥作用。该成果于北京时间2月29日在国际学术期刊《自然》发表。©由科普世界提供据了解,理想......

科研噩梦|假期过后发现实验室样品全部解冻…高校报警了

放假回来发现实验室冰箱出现故障,里面的材料全被毁了是种什么样的体验.....这些研究生表示:堪称噩梦,数十年直接白干。尽管没有迹象表明存在破坏行为,但学校还是报警并开启了内部调查。——————————......

华测检测广州中心材料实验室正式营业

近期,华测检测广州中心材料实验室正式营业,成为华测检测布局全国的第八个中心材料实验室。......