发布时间:2023-04-28 09:01 原文链接: 纳米机器人手术刀群

当谈到对抗被称为胶质母细胞瘤的致命脑癌时,选择非常有限。一个加拿大研究小组采取了一种新的方法。他们诱使癌细胞吸收碳纳米管,然后通过使用磁力旋转碳纳米管来撕碎这些细胞。对小鼠的治疗缩小了肿瘤的大小并延长了啮齿动物的生命,这一发现使研究人员对人类的类似结果充满希望。

胶质母细胞瘤肿瘤生长迅速,侵入局部脑组织,并对化疗和放疗产生抗性,使其非常难以对抗。此外,任何遗留的癌细胞往往会报复性地返回,尽管正在努力防止这种情况的发生。

在以前工作的基础上,多伦多大学机器人研究所和病童医院(SickKids)的研究人员用氧化铁颗粒填充碳纳米管,使其具有磁性。然后他们在碳纳米管上涂抹了一种抗体,使碳纳米管能够与胶质母细胞外部的一种蛋白质结合。结合后,这些管子被癌细胞摄取。

接下来,通过激活癌细胞附近的磁场,这些管子被制成旋转,对细胞的内部结构造成破坏--特别是对它们的线粒体,它从根本上提供细胞能量。实际上,这些管子就像数以千计的迷你手术刀,从内部切开癌细胞。

在使用小鼠的测试中,研究人员看到肿瘤大小明显减少。他们还能够将啮齿动物的中位寿命从大约22天延长到大约27天。

研究报告的共同作者、SickKids发育与干细胞生物学项目的高级科学家Xi Huang说:"通过使用深入癌细胞内部的纳米技术,机械纳米手术采用类似特洛伊木马的方法,可以让我们从内部摧毁肿瘤细胞。"

该过程现在需要更多的微调,然后才能在人体上进行测试,但胶质母细胞瘤治疗领域的任何新发展,如根据饮食导致癌细胞自毁,对于任何曾经被这种疾病触及的人来说都是值得欢迎的。

虽然是专门为帮助对抗胶质母细胞瘤而开发的,但Huang也表示,新的纳米机器人技术也可以被调整为对其他类型的肿瘤起作用。他说:"从理论上讲,通过改变抗体涂层并将纳米管重新定向到所需的肿瘤部位,我们有可能拥有精确摧毁其他癌症的肿瘤细胞的手段。"

这项工作已经发表在《科学进展》杂志上。


相关文章

“特洛伊木马”细菌诱导癌细胞自毁

以色列特拉维夫大学科学家首次将细菌产生的毒素编码为信使核糖核酸(mRNA)分子,并将含有这些分子的纳米颗粒直接递送给癌细胞,使癌细胞产生毒素,最终自杀,自杀率约为50%。相关研究刊发于最新一期《治疗诊......

研究发现癌症免疫防御新机制

近日,德国马格德堡奥托·冯·格里克大学的一项研究发现了一种新的癌症免疫防御机制,这一新机制为改善癌症免疫疗法做出了重要贡献。相关研究成果发表在《自然》杂志上。研究小组发现,辅助T细胞可以像杀伤T细胞一......

干细胞“上天”造血只为落地救人!

人的多能干细胞具有无限增殖潜能,可分化为人体内几乎所有类型的细胞。干细胞在疾病治疗、组织修复等领域具有极大的发展前景和临床应用价值。然而,目前干细胞的突破性研究仍面临着很大挑战,包括如何扩大干细胞的量......

“干细胞动物园”里有张发育时间表

欧洲分子生物学实验室团队揭示了生化反应速度的差异是导致小鼠和人类时钟差异的原因。为了确定这一发育原则,研究人员利用“干细胞动物园”重现了除小鼠和人类之外的4种哺乳动物的节段时钟。研究成果发表在最新一期......

“干细胞动物园”发育时间表,揭示生化速率变化控制作用

欧洲分子生物学实验室团队揭示了生化反应速度的差异是导致小鼠和人类时钟差异的原因。为了确定这一发育原则,研究人员利用“干细胞动物园”重现了除小鼠和人类之外的4种哺乳动物的节段时钟。研究成果发表在最新一期......

“干细胞动物园”里有张发育时间表

欧洲分子生物学实验室团队揭示了生化反应速度的差异是导致小鼠和人类时钟差异的原因。为了确定这一发育原则,研究人员利用“干细胞动物园”重现了除小鼠和人类之外的4种哺乳动物的节段时钟。研究成果发表在最新一期......

他们将干细胞送上天,太空早期造血有望实现

“3、2、1,点火!”话音刚落,一道火光缓缓上升,划破漆黑长夜。这是在5月10日晚21时23分,天舟六号货运飞船在海南文昌发射场成功发射的情形。看着天边的火光渐行渐远,慢慢消失,中国科学院深圳先进技术......

胃干细胞有望成为治疗糖尿病的手段

研究人员从人类胃部提取干细胞,并将其转化为能对血糖水平变化作出反应的胰岛素生产细胞,就像健康的胰腺细胞一样。这一发现可能意味着有一天,糖尿病患者可以生产自己的胰岛素,而不是依赖注射。人类胃部分泌胰岛素......

新方法让癌细胞死于压力

瑞典和法国的一个国际研究小组成功开发出一种能够杀死侵袭性脑瘤——胶质母细胞瘤的方法。通过用对接分子阻断细胞中的某些功能,研究人员可让癌症死于压力。相关研究发表在最新一期《iScience》杂志上。癌细......

大脑免疫细胞的子集被确定与认知和记忆有关

一项新的研究发现了小胶质细胞(大脑的免疫细胞)的一个子集在早期大脑发育、认知和记忆中发挥的重要作用。这一发现让我们对这些细胞的工作方式有了更好的了解,并可能为阿尔茨海默病等神经退行性疾病的新疗法铺平道......