发布时间:2020-11-02 17:12 原文链接: Jneurosci:这项研究揭示可卡因上瘾的内在机制

  在最近出版的《Journal of Neuroscience》杂志上,南卡罗来纳州医科大学和美国国立卫生研究院的研究人员描述了吸毒提醒如何改变负责动机的特定脑细胞,从而增加了寻求药物的欲望。这些与其他脑细胞之间的联系会增强,因为树突棘是大脑细胞中从其他神经元接收信息的部分,响应大脑中分子的细胞间通讯而扩大。这种增强的连通性增加了参与吸毒的冲动,使复发的可能性更高。了解这种沟通途径可能会导致针对药物成瘾的更有针对性的治疗。

  这项研究由MUSC神经科学系教授Peter W. Kalivas博士和在Kalivas实验室工作的助理教授Constanza Garcia-Keller博士领导。

(图片来源:Www.pixabay.com)

  几十年来,Kalivas实验室一直在研究吸毒成瘾的机制。在先前的研究中,卡利瓦斯和他的研究小组表明,这些刺的大小增加与动物对可卡因等药物的作用程度有关。有趣的是,响应于不是从其他神经元发出的信号,而是从围绕这些细胞的细胞外基质发出的信号,这些棘突增大了。他们发现,这些来自脑细胞外部的信号导致神经元内部发生变化,从而改变了它们与其他神经元的连接。

  Kalivas解释说:“关键发现是棘突的扩大是必要的,并且是由与成瘾性药物有关的线索引起的,而不是与自然奖励有关的线索引起的。”

  这是一个重要的区别,因为这意味着可以开发出多种疗法来减少对药物的渴望,而不会剥夺患者的愉悦体验。

  研究人员能够通过高分辨率共聚焦显微镜对大脑伏隔核中神经元的精细图像进行成像,伏隔核是一个与药物成瘾有关的区域。他们可以看到棘突在不同条件下的变化,甚至可以看到细胞内部导致脊柱尺寸增加的信号分子。

  神经元中的这些分子之一是粘着斑激酶(FAK)。当Kalivas和他的团队用一种药物抑制这种蛋白质时,动物在暴露于该药物的提示下并没有寻求可卡因的行为。此外,他们还发现,对该激酶和肌动蛋白结合蛋白cofilin的修饰导致脊柱增大,并增强了大脑中特定细胞类型的连接,这种连接为D1中棘突神经元-伏隔核中的神经元,可激发特定的行为。

  Kalivas说:“伏隔核中实际上有两个细胞群。一个激发动力,另一个抑制行为。” “我们的研究表明,这种信号传递通过促进动机行为的细胞群,而不是负责抑制行为的细胞群。”

  换句话说,可卡因正在改变大脑的结构和功能,尤其是在D1中等多刺的神经元中,以激发动物寻找更多的可卡因。

  更好地了解药物如何通过改变大脑信号来改变神经元结构,对于开发有效的疗法以避免复发至关重要。

相关文章

神经与血流信号转换成钢琴与提琴曲——配乐“电影”将大脑活动可视化

广域神经活动的视听示意图。图片来源:戴维·蒂博多等人/《公共科学图书馆:综合》复杂的神经元数据可以转换成视听格式?没错,其甚至能成为带有配乐的“电影”来方便人们探索,并帮助解释大脑执行某些行为时发生的......

揭秘癌细胞与神经元的“共生共舞”

美国斯坦福大学科学家曾在《自然》杂志刊发论文,首次证实恶性脑癌与大脑的神经连接密切相关。他们发现神经胶质瘤会与健康的神经元相互“交流”,形成突触,劫持来自健康神经元的电信号,从而促进自身生长。据英国《......

西湖大学:揭示神经元调控大脑血流新路径

该校生命科学学院特聘研究员贾洁敏团队的相关研究,揭示了神经元调控大脑血流新路径。他们发现了一座架在神经元与血管之间的“新桥梁”——类突触(NsMJ)。通过类突触,谷氨酸能神经元可直接作用于动脉血管平滑......

大脑里有位GPS“指挥官”

无论是太阳的东升西落,还是城市的东西南北,人们在日常生活中,寻找方向、定位目标或是记忆场景,都需要用大脑对空间信息进行处理和记忆。那么,这个过程是如何在大脑中发生的?中国科学院深圳先进技术研究院(以下......

新研究揭示自我中心编码的细胞和亚细胞机制

确定空间信息的表征机制是探讨空间信息处理的核心任务之一,为学习记忆中空间场景处理原则提供了重要启发。12月14日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所研究员王成团队,联合南方科技大学生命科......

我国学者在神经元糖代谢特征与机制研究方面取得进展

在国家自然科学基金项目(批准号:81991523、82073823)等资助下,南京中医药大学胡刚教授团队在神经元糖代谢特征与机制研究方面取得进展。研究成果以“神经元胞体主要进行有氧糖酵解代谢以防止氧化......

做“白日梦”时大脑在干什么

当人静静地坐着,突然之间,大脑“出神”,仿佛转向了完全不同的世界,可能是最近的经历,也可能是过往的记忆。事实上,可能只是做了个白日梦。那么,在做白日梦时,大脑中发生了什么?这是神经科学家们很难回答的问......

神经元损伤修复搭“桥”的微型生物机器人

由患者自身细胞构建的“分子医生”能够筛查癌症、修复受损组织、清除血管斑块,是研究人员对未来医学的构想。而美国塔夫茨大学发育生物学家MichaelLevin致力将这种构想变为现实。4年前,Levin和同......

半导体所在仿生覆盖式神经元模型及学习方法研究中获进展

人工神经网络是模拟人脑神经活动的重要模式识别工具,备受关注。近年来,深度神经网络(DeepNeuralNetworks,DNN)的改进与优化工作集中于网络结构和损失函数的设计,而神经元模型的发展有限。......

Nature:科学家成功揭示神经递质转运蛋白的精细化结构

神经元能通过一种称之为神经递质的化学信号来彼此交流沟通,近日,一篇发表在国际杂志Nature上题为“Mechanismsofneurotransmittertransportanddruginhibi......