乙醇是生产规模最大、应用程度最高的可再生生物液体燃料。现阶段,生物乙醇的主要来源是采用含糖量丰富的农业生物质为原料的生物炼制过程,以“玉米乙醇”最具代表性,然而其“与粮争地、与人争粮”的原料供应模式引发了极大的社会争议;以木质纤维素等农业、林业废弃物为原料的纤维素乙醇合成技术缓解了“粮食乙醇”在原料供应上的不足,但是纤维素原料的预处理及酶解糖化过程需要消耗大量能量、水和纤维素酶,从而极大地拉高了生产成本。与生物炼制过程相比,通过光合微生物平台将二氧化碳和太阳能直接转化为乙醇的技术路线(CO2 To Ethanol, CTE)减少了原材料预处理、底物提炼过程的损耗,也节省了对淡水和用地的需求,在经济性与可持续性上表现出更大的潜力与优势。

  中国科学院青岛生物能源与过程研究所微生物代谢工程团队在蓝细菌光合生物合成乙醇技术方面取得了系列研究进展。该团队以重要的模式蓝细菌集胞藻PCC6803(Synechocystis sp. PCC6803)为底盘藻株,将来自运动发酵单胞菌的PdcZM-AdhIIZM(丙酮酸脱羧酶-II型醇脱氢酶)途径导入PCC6803,打通了乙醇光合合成路线,实现了工程藻株中乙醇的合成与分泌;针对蓝细菌生理和代谢背景特性分析,使用来自集胞藻PCC6803自身的NADPH依赖型的II型醇脱氢酶基因slr1192替换AdhIIZM后,成功地优化了乙醇合成途径与底盘藻株的适配性,使乙醇产量提高了50%;在此基础上结合竞争性途径敲除和代谢途径拷贝数强化等策略,最终获得了具有较强乙醇光合合成能力的工程藻株Syn-HZ24,在柱式反应器中经过28天培养后,乙醇产量达到5.5g/L,合成速率0.2g/L/day,处于国际领先水平。上述结果奠定了该团队在蓝细菌乙醇方向上的研究基础,已经发表于《能源与环境科学》(Energy & Environmental Science,Gao, et al, 2012, 5:9857–9865)。

  为了进一步提升蓝细菌工程藻株乙醇光合合成的潜力,该团队采用体外重构和动态分析的策略对新发展的PdcZM-slr1192途径的催化特性进行了深入挖掘。首先脱离复杂的胞内环境在胞外重新构建该途径,以纯化后的酶(PdcZM/slr1192)、底物(丙酮酸,Pyruvate)、辅因子(NADPH/NADH/TPP)、金属离子(Mg2+)以及中间产物(乙醛,acetaldehyde)对整个途径的催化效率影响分别进行定量的滴定分析,结果发现影响乙醇合成的限制因素是PdcZM而非slr1192;在总蛋白浓度设置恒定的条件下,PdcZM-slr1192的浓度比为4:6时,全途径具有最大的乙醇合成催化活性。为了验证Cell free条件下获得的结果,研究人员在集胞藻PCC6803中构建了PdcZM-slr1192浓度配比不同的工程菌株,通过代谢工程结合酶活与蛋白含量分析实验,证实了现有工程藻株中PdcZM的表达量和活性是乙醇合成能力的首要限制因素。此外,体外重构体系中的滴定数据结合蓝细菌胞内代谢物的实际含量分析还显示,提高NADPH和丙酮酸的供应量也应该是提高乙醇合成效率的重要选择。上述结果明确了蓝细菌乙醇光合工程藻株进一步改造的方向,已经发表于生物能源期刊Biotechnology for Biofuels(Luan, et al, 2015, 8:184)。

  基于已经开发的蓝细菌乙醇光合工程藻株,该团队又进一步探索了光合细胞工厂的扩大化培养技术。光合生物制造通常在户外、开放式、未灭菌的条件下进行,因此经常面临各种模式的生物污染的严重威胁进而导致扩大培养的失败。研究人员在进行工程藻株Syn-HZ24的开放式、规模化培养中发现,其乙醇合成与积累过程受到了微生物污染的严重影响。通过分析和鉴定,确定了Pannonibacter phragmitetus为乙醇光合合成的主要威胁来源,该菌可以以乙醇为唯一碳源进行生长,迅速消耗工程藻株合成的乙醇并在培养体系中大量增殖。通过对Pannonibacter phragmitetus和Syn-HZ24的生理和生化分析,研究人员提出提高培养体系pH值来抑制Pannonibacter phragmitetus侵染并恢复乙醇光合合成的设想(Bicarbonate-based Integrated Carbon Capture System, BICCS),并在实验室柱式反应器和户外薄膜挂袋两种体系下进行了验证,结果表明该策略可以有效解决Syn-HZ24在开放式培养过程中的生物污染问题,在规模化培养9天后乙醇产量达到0.9g/L,而常规pH条件下的对照体系中无乙醇积累。此部分工作鉴定了一种工程蓝细菌规模化培养过程中新的生物污染模式,并针对性地设计、验证了解决方案,对光合细胞工厂培养的工程化、规模化发展有普遍的借鉴意义。该工作近期发表于Biotechnology for Biofuels(Zhu, et al, 2017, 10:93)。

  上述研究获得国家自然科学基金、“863”计划、山东省泰山学者项目、山东省自然科学基金以及青岛市创新领军人才项目的支持。


图1. 采用BICCS补碳策略提高培养体系pH值以抑制杂菌污染并恢复乙醇合成

图2. 蓝细菌乙醇光合工程藻株的实验室培养和户外规模化培养

相关文章

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

青岛能源所成功研发蓝细菌超突变系统

近日,中国科学院青岛生物能源与过程研究所微生物制造工程中心吕雪峰科研团队开发了新型蓝细菌超突变系统,突破细胞基因组复制高保真性对其进化速率的限制,通过遗传和环境协同扰动大幅提升聚球藻细胞复制突变率和适......

海滩岩胶结作用研究获进展

近日,中国科学院南海海洋研究所边缘海与大洋地质重点实验室助理研究员张喜洋、副研究员杨红强与中国科学院南京地质古生物研究所等合作者在海滩岩微生物介导的胶结作用取得新认识。相关研究发表于《古地理学,古气候......

蓝细菌中发现新型脂肪类生物聚合物

微藻作为地球上最古老的生物之一,可以为甲烷、生物氢、生物柴油等多种不同类型的可再生生物燃料提供原材料。近日,中科院广州地球化学研究所有机地球化学国家重点实验室、深地科学卓越创新中心博士研究生孔祥兰和研......

最新研究揭示蓝细菌受光/暗调控的蛋白质降解

光对于光合生物(包括高等植物和蓝细菌)是必需的,并参与调控蛋白质的合成与降解。光调控的蛋白质降解是光合生物中蛋白质质量控制的重要机制,其中最典型、研究最深入的是光系统II反应中心D1蛋白,其光诱导的降......

研究揭示蓝细菌中赖氨酸甲基转移酶的作用机制

蛋白质翻译后修饰通过在一个或几个氨基酸残基上加上化学修饰基团而改变蛋白质的结构和功能,参与蛋白质的活性状态、定位、折叠以及蛋白质-蛋白质间相互作用。赖氨酸甲基化是常见的蛋白质翻译后修饰类型之一,其调控......

一文详解蓝细菌

旧名为蓝藻(bluealgae)或蓝绿藻(blue—greenalgae),是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素a,但不含叶绿体(区别于真核生物的藻类)、能进行产氧性光合作用的大型单细......

科研人员发现蓝细菌适应高盐逆境深层机制

蓝细菌,又称为蓝藻或蓝绿藻,是地球上最古老的微生物之一。它们能通过植物型光合作用,将二氧化碳固定并转化为各类碳水化合物。研究发现,很多蓝细菌在高盐环境下在细胞内合成并积累蔗糖等小分子化合物来抵抗逆境,......

蓝细菌合成生物学研究进展

光合生物制造技术是指以光合生物为平台,将太阳能和二氧化碳直接转化为生物燃料和生物基化学品的技术,可以在单一平台、单一过程中同时取得固碳减排和绿色生产的效果。蓝细菌是极具潜力的光合微生物平台,相比较于高......

固氮基因研究获突破能让植物自行合成氮肥

  美国圣路易斯华盛顿大学日前发布新闻公报说,该校研究人员通过移植固氮基因,成功使一种光合作用细菌获得了从空气中吸收氮的能力。这将有助于研究植物固氮技术,培育不需要施氮肥的农作物。......