发布时间:2019-02-11 14:27 原文链接: 生物炭老化及其对重金属吸附的影响

  生物炭具有丰富含氧官能团、多孔结构、阳离子交换量、芳香性结构等使其对重金属具有良好的固持作用,进而在重金属污染土壤修复中具有良好的应用前景。生物炭施入土壤中在与土壤接触过程中受物理、化学和生物作用而发生老化现象,致使生物炭特性发生改变。

  下文阐述了原料来源、热解温度和老化方法对老化生物炭特性的影响,以及老化生物炭对重金属吸附的影响机制。老化作用对生物炭特性的改变主要体现在灰分、表面元素组成、含氧官能团、pH、形貌特征、孔隙结构及比表面积。老化生物炭表面含氧官能团、负电荷和CEC 含量增加会促进其对重金属的吸附;而比表面积和pH 的降低、酚羟基和芳香醚含量增加以及羧基数量减少则抑制其对重金属的吸附。

  前 言

  生物炭(bio)是由生物质在完全或部分缺氧的状态下热解(通常<700 ℃)产生一类含碳量较高且高度芳香化固态物质。近年来,生物炭在固碳减排、土壤改良和污染修复等方面的环境效应和生态效应已经引起广泛关注。自然界中生物炭作为森林火灾的残留物具有很长的寿命可以在土壤生态系统中保存时间超过10000 年,但也有研究人员指出,生物炭的平均残留时间最少只有19 年。因此,生物炭在进入环境以后,可能在生物、非生物过程中被很快降解,或者至少是表面迅速氧化,而这样的过程无疑对生物炭的环境功效产生影响。研究者初步证实,生物炭老化后一方面其表面含氧官能团(如羟基、酚羟基等)的增加可以促进其对重金属的吸附,而另一方面其比表面积和pH 的降低会导致生物炭对重金属吸附量降低,那么老化过程对生物炭特性的改变及其对重金属吸附的促进或降低机制如何? 这个问题还亟待研究解决。

  本文在阐述老化作用对生物炭特性影响的基础上,综述了老化作用对生物炭吸附重金属的影响机制,并提出生物炭的老化及其对重金属吸附影响进一步研究的相关科学问题。

  一、老化作用对生物炭特性的影响

  1 原料来源及热解温度对老化生物炭特性的影响

  生物炭原料来源非常广泛,常见的有木屑、秸秆、 竹屑、稻壳等,也有动物粪便、沉积物、污泥等,其主要组分是木质素、纤维素、半纤维素和无机矿物组分。研究表明生物炭的特性(如比表面积、孔结构、孔体积等)受到原料来源和热解温度的影响,如600 ℃制备的生物固体生物炭比表面积(20.3 m2∙g-1) 较松针生物炭(207 m2∙g-1)小;随热解温度的升高,生物炭 C、O、灰分含量及含氧官能团含量不断降低,而比表面积、孔容积不断增加等。

  老化生物炭特性因原料来源和热解温度而表现出多元性。如,Ascough 等利用重铬酸钾老化生物炭发现赤松炭δ13C 的变化率高于海榄雌炭,这与原料中所含生物聚合物碳原子相对比例及其种类(如纤维素、木质素)有关。Jin 等利用HNO3对秸秆炭和粪便炭进行老化处理,其结果表明粪便炭极性基团丰度的变化较秸秆炭更为敏感,这可能是粪便炭中非芳香族C 含量较高而芳香族缩合度较低,从而使其稳定性相对较低 。

  这些研究均表明原料来源和热解温度对老化生物炭特性的影响是不容忽视的。但研究人员未对该方面做更为详细的研究,从而无法预测老化生物炭特性。

  2 老化方法对生物炭特性的影响

  因生物炭施入土壤中很难从非生物炭来源中将其分离出来,从而无法了解土壤中生物炭特性在自然老化进程中的变化规律。但通过实验室模拟对生物炭进行短期苛刻老化可以解决这一问题,它能够预测生物炭在自然环境中几百年至数千年老化后的特性。模拟生物炭在环境中老化进程的方法主要分为4 种,即化学老化(主要试剂:H2O2、HNO3、KOH、KMnO4、空气、臭氧及重铬酸钾等)、物理老化(主要为冻融循环和高温老化)、生物老化和短期自然老化(主要是培育实验包括土培及田间试验)。

  生物炭老化是指生物炭施入环境中其物理化学性质发生变化的过程,包括自然老化、化学老化、物理老化等。生物炭进入环境后会受到许多物理作用的影响。Skjemstad 等发现自然环境中雨滴或者风力能够减小某些类型生物炭的颗粒尺寸,且草本植物生物炭比木本植物生物炭更易受到这些物理作用力的影响;在冻融循环或高温条件下,水渗透进入生物炭的孔隙内,冷冻膨胀的作用力能够使生物炭表面局部发生破裂;当生物炭进入土壤时,植物根系可直接与生物炭颗粒相互作用,如植物细根或根毛扩展到生物炭表面并使其大孔暴露。

  生物炭的化学老化是指生物炭在环境中受到化学氧化作用使其表面性质发生变化的过程。许多研究者通过不同的化学氧化方法(例如氧气、高氯酸盐、硝酸、臭氧或者空气等)来模拟生物炭在环境中的化学老化过程,这些化学氧化剂能够剧烈地氧化生物炭,使得生物炭表面结构发生变化,且会产生含氧官能团(诸如羟基、羧基、硝基等)。如Jimenez-Cordero 等用臭氧氧化葡萄籽生物炭,通过检测发现生物炭比表面积和微孔增加,而中孔或介孔贡献率及平均孔径降低,并形成独特的颗粒形态。综上,化学老化能使生物炭表面积及表面含氧官能团数量增加,这可能更有利于生物炭对重金属的固持。

  生物老化主要是指微生物以生物炭为基质的同化和呼吸氧化作用等生命活动的过程。生物炭可视为纤维素、呋喃、吡喃以及脱水糖、羧酸及其衍生物、苯酚、烷烃及烯烃衍生物等成分,能够为微生物的生命活动提供充足的营养物质。在土培条件下,生物炭固定碳组分被微生物利用而分解;这些研究均表明微生物对环境中的生物炭老化作用是不容忽视的。这些老化作用与化学老化作用一样,亦产生生物炭理化特性(如比表面积、含氧官能团等)的变化。但研究人员未对该方面做更为详细的研究,从而无法预测生物炭与重金属相互作用,进而缺乏生物炭对重金属环境风险控制的长期预判。

  生物炭老化过程极其复杂,其表现在自然环境中生物炭老化并非只受单一老化方法的作用,而是受物理、化学及生物等多种老化方法协同作用。尽管现有许多研究已对单一老化方法进行研究,并取得了上述研究成果,但缺乏对生物炭老化进程中不同老化方法协同作用的机理,从而无法正确理解生物炭与污染物之间的耦合作用。

  不同老化方法导致生物炭特性的差异主要体现在5 个方面(表 1):①灰分含量的改变。如,化学试剂(如H2O2)能使被有机质覆盖或位于生物炭内部的难溶性矿物(Ca、Mg、Si 等)被溶出而降低灰分含量,相反老化作用亦会对生物炭中的无机矿物起浓缩作用,导致其灰分含量总体增加。②表面元素组成发生变化。一方面因生物炭中有机碳流失使得C 含量降低而O 含量增加,另一方面因生物炭中不稳定物质(如碳水化合物)的溶解或分解导致C 含量增加而O 含量下降。③表面含氧官能团变化。老化过程中生物炭表面不饱和脂肪烃和芳香环被破坏并引入含氧官能团,使得O/C、极性、亲水性和阳离子交换容量(CEC)增加,从而使Zeta 电位与粒子间静电斥力降低。④比表面积变化。如碱处理能够增加生物炭的介孔/中孔和微孔体积(微孔是比表面积的主要贡献者,约占80%),使其比表面积增加,而酸处理促进细微孔和大孔的形成或引入含氧官能团于孔的入口处,从而阻碍了氮分子进入导致生物炭比表面积减少。此外,温和环境(如土培实验)下生物炭中微孔及比表面积无明显变化;⑤表面形貌发生改变。如短期自然老化过程中生物炭表面形态和微孔及比表面积无明显变化,而长期自然老化过程中雨滴或者风力能够减小某些类型生物炭的颗粒尺寸,使其形貌发生改变。

21.jpg

  二、支持民营企业提高绿色发展水平

  研究老化作用对生物炭吸附重金属的影响机制,对评估生物炭环境行为和其在修复重金属污染土壤中的应用价值具有重要的指导意义。众所周知,生物炭吸附重金属的机理主要包括表面络合作用 、阳离子-π 作用、静电吸引、阳离子交换及(共)沉淀等。因生物炭老化过程中其表面元素组成、含氧官能团以及形貌特征等均发生不同程度的改变(表 1),从而影响生物炭对重金属的吸附量(图 1)。如,Cheng 等研究表明长期暴露的木炭与新鲜木炭相比,其对Cu2+的吸附容量提高2~5 倍,这与长期暴露使得生物炭表面负电荷的增强有关;而Guo 等将生物炭在恒定温度(30±1 ℃)下以60%持水能力在黑暗中孵育300 d,老化后生物炭表面的氧浓度、酚羟基、 芳香醚等含氧官能团增多,而羧基略有下降,从而导致Cu2+在老化生物炭上吸附容量均小于新鲜生物炭。 因而,老化作用对生物炭吸附重金属离子既有促进作用又有抑制作用。

22.jpg

  生物炭老化对重金属离子吸附的抑制作用主要为:①比表面积和pH 的降低会导致生物炭对重金属离子(如Pb2+)的吸附量降低;②生物炭表面酚羟基和芳香醚含量增加而羧基数量减少,老化形成的酸性条件下含氧官能团难以解离,从而使得CEC 含量降低,进而导致重金属离子在生物炭上的吸附受到抑制;③在老化形成的酸性条件下,一些重金属离子发生还原反应并以沉淀物形式存在,从而使生物炭对其吸附量降低。

  氧化参数(主要是氧化剂浓度、氧化时间和温度)影响老化生物炭的理化特性,进而影响其对重金属的吸附量。其结果显示氧化剂浓度是影响生物炭吸附Cu2+的关键因素,并随着氧化剂浓度的增加生物炭对铜的吸附量降低。此外,Wang 等研究表明,老化生物炭的比表面积和pH 值随着氧化温度(4~45 ℃)增加而降低,因而氧化温度为45 ℃时生物炭对Cu2+的吸附量最低。综上,老化作用对生物炭吸附重金属离子既有促进作用又有抑制作用,但何种情况下产生促进作用?何种情况下产生抑制作用?需待进一步研究。

  三、总结及展望

  生物炭施入重金属污染土壤在固持土壤重金属和降低其生态毒性方面具有良好的效果。然而,生物炭施入土壤将不可避免地受到化学、物理及生物的作用而发生老化现象。尽管有关生物老化的机理及其对重金属固持的研究已取得一些重要科学进展,但仍有一些关键问题尚待解决,需开展以下几个方面的研究:

  1、老化生物炭特性变化与其母源物质及热解温度之间相互关系尚不清楚,因而需要进一步研究两者之间的关联性,进而了解老化进程中生物炭与污染物相互作用的变化规律。

  2、鉴于现有研究对物理、化学及生物老化的协同作用机制及贡献率尚不清楚,因而后期应针对该内容进一步研究。

  3、目前关于老化作用对生物炭吸附重金属既有抑制作用又有促进作用,到底什么情况下起促进作用?什么情况下起抑制作用?这一点目前尚未明确,因而有待进一步研究。

  4、鉴于目前大多数研究是针对老化作用对生物炭吸附单一重金属的影响机制,但在自然环境中往往是多种重金属同时存在。多种重金属共存会存在吸附竞争机制,老化作用会对该机制有什么样的影响, 这一点目前尚不清楚,有待后期进行深入研究。

  5、目前研究者主要是静态终端地描述老化生物炭特性,这无法有效评估生物炭在其生命周期内环境效应的动态变化过程,因而需要建立一种长期、动态示踪老化生物炭特性的方法。

相关文章

化妆品检测实验室装修设计内容

广州特耐苏净化设备有限公司详细介绍:化妆品检测实验室装修设计内容化妆品检测的常规检验内容包括:理化指标、感官指标、卫生指标中细菌总数、重量指标和外观要求。更为细分的检测内容还有:重金属检测、微生物检测......

南海所:汞暴露对中华鲎幼体毒性机制研究取得重大进展

近日,中国水产科学研究院南海水产研究所中华鲎保护研究团队在环境重金属汞污染物对中华鲎幼体的毒性机制研究取得新进展,为开展濒危物种中华鲎的海洋环境风险评估提供了科学依据。相关研究成果发表于Environ......

基于XRF和VisNIR数据融合的土壤重金属浓度分区预测是否更佳?

文章信息第一作者:石陶然通讯作者:吴春发教授,骆永明研究员通讯单位:南京信息工程大学,中国科学院南京土壤研究所https://doi.org/10.1016/j.scitotenv.2023.1683......

血液检测新方法可衡量人体器官老化

美国科学家提出了一种血液检测新方法可分析人体器官的老化,或能更好地预测疾病风险和老龄化影响。研究者对逾5000人进行调查分析发现,其中近20%的人表现出某一器官明显加速老化或器官特异性疾病,这可能会增......

月球玻璃地质时间尺度的超凡抗老化效应研究获进展

玻璃被认为是气、液、固之外的第四态物质,对社会发展和科技进步起着重要作用。玻璃是热力学不平衡状态物质,在玻璃化转变温度以下会不可避免地朝平衡态转变,即发生物理老化(以下简称老化),导致其结构和性能随着......

研究揭示热解温度对生物炭多相结构演变的影响机制

近日,农业农村部环境保护科研监测所重金属生态毒理与污染修复创新团队孙约兵、孙涛等揭示了秸秆生物炭多相结构特征及其潜在环境风险,为秸秆资源的可持续利用和生物炭定制开发提供理论支撑。相关研究成果发表于《生......

研究揭示热解温度影响生物炭多相结构演变机制

近日,农业农村部环境保护科研监测所重金属生态毒理与污染修复创新团队揭示了秸秆生物炭多相结构特征及其潜在环境风险,为秸秆资源的可持续利用和生物炭定制开发提供理论支撑。相关研究成果发表于《生物资源技术》(......

改性生物炭可大幅降低汞污染治理成本

9月19日,记者从中国科学院东北地理与农业生态研究所获悉,该所科研人员制备出一种改性生物炭,大幅降低了废水中汞污染的治理成本。相关研究论文发表在工程技术领域期刊《燃料》上。汞作为一种全球性污染物,可引......

微塑料对重金属生物可利用度的影响研究获进展

土壤作为陆地环境的基础,并与其他生态系统广泛联通。土壤作为污染物的“源”和“汇”而备受关注。随着经济的快速发展和工业化进程的加快,微塑料和重金属通过工业生产、农业生产和交通运输等环节进入土壤,其复合污......

征集:粮油、粮食及制品中镉等多元素含量快速检测仪器

近日,湖南省粮油产品质量监测中心受国家粮食和物资储备局标准质量中心委托,拟组织粮食及制品中镉含量和粮油中多元素含量同测快速检测仪器的适用性验证工作,需公开征集符合要求的仪器,包括粮食及制品中镉含量快速......