发布时间:2016-04-22 11:09 原文链接: 神经学家尝试将脑细胞“窃听术”自动化

  将一个电极夹在活体动物大脑细胞上记录其电颤振是一项需要灵巧度和耐心的工作。这种技术的名字是“全细胞膜片钳”,被誉为“神经科学最好的艺术”,神经生物学家Edward Boyden说,而且该技术在全世界范围内仅有寥寥无几的实验室可以操作。

  但研究人员正在设法使其转变为精简的、自动化的技术,利用机器人和可下载的源代码让任何实验室都可以进行操作,从而让这种艺术不再那么神秘。

  “全细胞膜片钳提供了一种了解神经回路的独特方法,但这种令人兴奋的技术使用量却很低。”美国弗吉尼亚大学霍华德·休斯医学研究所珍妮莉娅研究院神经学家Karel Svoboda说,“这正是自动化是极为令人振奋方向的原因。”

  3月3日,在麻省理工学院工作的Boyden和同事发表了详细的说明指南,介绍了如何组装及操作全细胞膜片钳自动化系统,他们在2012年首次描述了这一概念。这份指南代表了Boyden和亚特兰大佐治亚理工学院机械工程专家Craig Forest实验室的最新合作成果,后者主要进行机器人自动化研究。

  大多数神经记录会包括在脑细胞间插入电极,用来捕捉神经元之间的生物电截击。比如“细胞外记录”可以探测外面的信号,但是却错过了细胞内的生物电活动,而后者决定了它们是否会发出电击。这正是全细胞膜片钳的用武之地,这种技术能够嵌入到一个神经元的内部。这个微妙的过程“有着非常陡峭的学习曲线,很多人甚至从未使其发挥作用。”Svoboda说。

  全细胞膜片钳涉及到将一个含有电极丝的微型玻璃吸管放入大脑。在最普通的“盲”版操作中,研究人员需要在看不见神经元的情况下实施这一过程。科学家必须持续增加压力使脑白质离开吸管,但是电极电阻升高表明附近存在细胞,他们必须迅速地在恰当时机切换到抽吸模式,以便在超薄的吸管尖端对少量神经元膜进行密封。再通过其他若干次抽吸,研究人员就可以在细胞膜上钻出一个小孔,用来记录神经元的活动。在错误的角度电击神经元、对压力调控错误以及其他大量的变量都会导致信息记录错误。

  “每一步都有一定的失败率,在整个过程中出现错误的几率会成倍增加。”Boyden说。经验丰富的操作人员成功率也仅在20%~60%之间。

  Boyden和Forest决定让这一棘手的技术变得自动化。他们的自动化机器人的操作能力现在尚未超过人类专家,其在小鼠实验中的平均成功率为33%。这套设备在商业操作平台LabVIEW上进行,仅需要研究人员放置好动物和吸管,接下来一个计算机算式会控制吸管的内部压力和大脑内的操作。佐治亚州亚特兰大一家叫作Neuromatic Devices的公司会根据Boyden和Forest的技术提供相关机器,但是该公司并未披露相关价格和销售量。

  得克萨斯州立大学奥斯汀分校的研究人员也创建了类似的自动修补系统,该系统通过MATLAB计算机环境进行控制。它利用一种略有差异的算术公式决定何时抽吸,其在小鼠大脑细胞实验中的成功率为17%左右。带领该团队的神经学家Niraj Desai表示,他希望应用更加先进的算术公式。

  一些研究人员质疑这些记录机器人能否超越最顶尖的人类专家。“参与人类决策的元素比机器捕获的元素丰富得多。”英国伦敦大学学院神经学家Michael Hausser说。但他补充说,这一技术对于新手操作来说仍然向前推进了一大步。其他人则表示,机器人可以帮助不同水平的用户进行冗长或是复杂的实验,而在这些情况下,人类的疲劳会变成限制因素。

  这种自动化技术能否普遍被神经科学界接受仍要拭目以待。现在,上述两个团队的编码已经可供人们免费下载。“我们希望能够帮助尽可能多的人,回答关于神经元如何运算的问题。”Boyden说。

相关文章

未来的计算机会在脑细胞上运行吗?

近日,约翰斯·霍普金斯大学隆伯格公共卫生学院教授ThomasHartung团队在《科学前沿》杂志发布了一项“类器官智能”计划。他表示,“计算机和人工智能一直在推动技术革命,但它们正在达到'天花......

猴头菇中活性物可促进神经生长

澳大利亚昆士兰大学研究人员表示,他们开展的一项临床前试验发现,猴头菇中的一种活性化合物能促进神经生长,从而增强记忆力。相关研究刊发于最新一期《神经化学杂志》,有望为治疗和预防阿尔茨海默病等神经退行性认......

培养皿中的脑细胞也能学习玩游戏

培养皿中的人类和老鼠神经元学会了玩电子游戏Pong(乒乓)。这些实验证明,即使是培养皿中的脑细胞也能表现出固有的智力,并随着时间的推移而改变它们的行为。相关研究10月12日发表于《神经元》。“从蠕虫到......

阿尔茨海默症有希望!刺激大脑能长期改善记忆

人的记忆力会随着年龄增长而衰退。但将来有一天,会有一种简单、无需药物的方法扭转这种趋势。在近日发表于《自然—神经科学》的一项新研究中,美国波士顿大学认知神经学家RobertReinhart和同事证实,......

磁铁遥控脑细胞?青年华人学者余逸超在《先进科学》发文

小小的磁力,能用来精准控制脑中的细胞?这种新技术也许不再是天方夜谭。伦敦大学学院的科学家实现利用磁场和微观的磁性粒子,远程激活大鼠脑中的星形胶质细胞。这一发现很有可能开发一类非侵入性疗法,用于治疗神经......

超声波首次成功控制哺乳动物脑细胞

美国索尔克研究所的科学家在9日出版的《自然·通讯》杂志上发表论文称,他们对培养皿中的人类细胞和活小鼠的脑细胞进行基因编辑,向其中添加通道蛋白TRPA1,首次用超声波激活了这些细胞。这种新方法为实现无创......

美国“脑计划”取得重大进展:哺乳动物大脑详图可供研究

小鼠大脑图谱旨在解析小鼠大脑的基因组学基础形式和功能,可作为相关人类研究的模型。在人脑组织切片上进行的神经元数字重建叠加。图为人脑最外层新皮层内侧颞回中的几种不同类型的神经元。一种高度专业化的人类神经......

细胞自噬相关蛋白参与脑细胞分子运输的新机制

此前研究表明,自噬作为一种细胞自我循环或废物清除的过程,对于神经元的存活而言必不可少。在最近一项研究中,来自科隆大学CECAD衰老研究中心的NataliaKononenko实验室的科学家们发现,自噬实......

NatCommun:发现保护脑细胞连接的分子胶

昆士兰大学的研究人员发现,脑细胞之间的某些连接可以抵抗退化--创伤性脑损伤和神经退行性疾病的标志。昆士兰大学昆士兰脑研究所克莱姆琼斯老年痴呆症研究中心的SeanCoakley博士和MassimoHil......

脑细胞类型中增强子遗传变异或预测精神/神经疾病风险

可能有人认为,大多数遗传相关疾病的主要原因来自编码DNA的突变---基因组编码区域的改变可以直接导致对健康人体重要的特定蛋白的表达发生变化。但是,人类DNA的大部分是非编码DNA,即不直接翻译成功能性......