发布时间:2023-04-10 11:48 原文链接: 什么!这些金属材料竟然也有“玻璃心”?

如果一个人有敏感脆弱的心理状态,对别人一句随口的评价特别在意。对自己所犯过的错误念念不忘,用过去的经历反复折磨自己,心灵像玻璃一样易碎,就会被称作“玻璃心”。


所以对于人来说,要少一些玻璃心,变得坚强和坚韧。但是如果换一种思路,我们周围常用的金属强度高,硬度高,韧性高,它们是很多构件的“主心骨”,是生活中最常见的物质之一。如果连非常强的金属们都变得“玻璃心”了,生活会变得怎样呢?


在思考这个话题前,首先要弄清楚一个问题,金属怎么变得玻璃心?


宏观的固体材料是由大量的微观粒子(原子、分子或者离子)凝聚在一起形成的,我们就按照固体材料中微观粒子的排列方式将材料分成两大类:粒子排列十分规则的晶态物质和粒子排列不具有长程有序性的非晶物质(也就是常说的玻璃态物质)。我们日常见到的材料如塑料、玻璃、沥青、琥珀、橡胶等都是玻璃态固体,也就是说这些材料的粒子排布没有周期性。


晶体、玻璃态、气态物质的原子排布示意图 图源:[1][2]


随着现代冶金技术的发展,也就是热合金熔体快速冷却技术的不断成熟,这项技术可以在室温下保留合金的非平衡态结构,让金属熔体中无序排布的原子来不及扩散运动到平衡态位置,最终得到的固体原子构型也呈现出无序排布的特点。这种超高冷却速度得到的合金就是具有玻璃一样原子无序排布的非晶合金,也成为金属玻璃。


金属玻璃和晶态金属的高分辨透射电子显微镜照片对比:可以看出金属玻璃原子无序排布,而晶态金属粒子排列十分规则。图源:[2]


这种方法得到的金属玻璃在外观上具有金属一样的光泽,看不出和常规的金属有明显的区别,那么这一类具有“玻璃心”的金属材料在现实生活中有哪些优越的性能?


利用快速急速冷却技术得到的大块非晶合金的照片。图源:[3][4]


会变得更强更优


传统的晶体金属的变形是依靠里面周期性排列的原子中产生缺陷来实现的,而金属玻璃由于没有晶体中的变形缺陷,因而具有很高的强度和硬度。所以高强度是金属玻璃最显著和独特的力学特征之一。


各种合金成分玻璃化之后硬度都显著高于其晶态合金,并且钴基块体金属玻璃的强度创造了现今金属材料强度的最高纪录,它的强度是普通钢材的十五倍。那生活中常用的钢铁来说,铁基金属玻璃的断裂强度是一般结构钢的数倍,是一种高强金属材料。


直径为1毫米的圆柱状铁基金属玻璃,以及压缩实验后的形貌。图源:[5]


由于金属玻璃具有传统不锈钢所无法达到的强度和耐磨性,以及液体一样的加工精度,一些锆基和钛基等成分的非晶合金已经用在了在手术刀片上,可以达到陶瓷级别的锋利。


左边为镀有锆基非晶合金的钢制手术刀片,右边为一片整体的锆基金属玻璃手术刀片。图源:[6]


当外界的载荷速率很高时,金属玻璃的动态韧性急剧升高。在这种情况下,一些特定成分的金属玻璃具有高强、高韧和侵彻穿深性能,从而来制造反坦克的动能穿甲弹的穿甲弹。也就是说,金属玻璃弹芯的穿甲弹非晶合金在高速撞击时,金属玻璃的高韧性和侵彻穿深性能使得其穿甲性更好,是第三代穿甲和破甲反坦克导弹的备选材料。


左上图是第三代金属玻璃弹芯穿甲弹材料的扫描电子显微镜图片,左下图是对应的模型,蓝色的圆柱长条代表钨丝,中间的紫色填充物代表锆基金属玻璃。图源:[7]


近来发现的由铱、镍、钽三种元素组成的金属玻璃,由于金属玻璃独特的无序结构特点,具备极强的耐蚀和抗氧化能力。这种金属玻璃可在王水中浸泡数月而不被腐蚀,而且在常规金属难以耐受的高温环境中也难以被氧化。利用这类新型金属玻璃制成的零部件不仅能在高温条件下服役,而且能在非常恶劣环境中使用,所以可以应用到普通金属难以触及的领域。


左图是铱镍钽金属玻璃的圆柱形棒材,右图是铱镍钽金属玻璃做成的微型齿轮,这些构件可以在极其恶劣的环境中应用。图源:[8]


会变得更五彩缤纷


我们对物品颜色的需要是多元多样的,在商品生产中对于颜色的调节和控制具有重要意义。金属合金表面着色技术主要利用电化学沉积来进行,这种工艺通过改变表面氧化层厚度所决定的可见光干涉来使得金属表面呈现不同的颜色。但是对于这种工艺来说,因为电化学沉积的氧化层的厚度在产品的使用过程中是几乎不会改变的,所以这项技术所实现的产品颜色在使用过程中也是固定的,也就是说一次加工只能实现一种颜色。


但是最近研究表明,有一种由稀土元素铈作为主要组元的金属玻璃。这种金属玻璃由于铈元素具有一定的化学活性,所以在室温下有高的氧化速率,再加上金属玻璃中均匀的原子种类分布,使得非晶合金的表面氧化层厚度均匀。通过一定的合金化方法,研究人员实现了金属材料在自然条件下的随时间变色。


彩色金属玻璃颜色随时间变化规律,在一百多天的时间内,金属玻璃的外观变换了多种颜色。图源:[9]


会变得更平易近人


金属玻璃因为其原子排布无序,没有晶体材料周期性原子晶格的限制,会表现出非常高的弹性极限。金属玻璃薄膜在仿生学中有重要应用,比如一种金属玻璃皮肤是通过将锆基金属玻璃薄膜直接生长在柔性塑料衬底上得到的。金属玻璃皮肤柔性好,很容易弯曲超过180度,这是常规金属难以实现的性能。通过改变金属玻璃薄膜的厚度,金属玻璃皮肤人眼视觉上可以变“透明”。


左图是柔性优异的金属玻璃皮肤的照片,很容易弯曲超过180度;右图是通过调节金属玻璃皮肤的厚度得到的“透明”金属玻璃皮肤。图源:[10]


金属玻璃皮肤同时保留了金属材料高电导率的特点,而且电阻与应变之间有完美的线性关系,这种线性关系稳定性非常好。上面的这些特点使得金属玻璃皮肤可以用来灵敏地监测手指弯曲程度,在医学和仿生学等方向有很大应用前景。


看完变得“玻璃心”的金属——金属玻璃,是不是感觉一种造福人类的先进材料正在慢慢地发展成熟呢?


金属玻璃不仅是众多非晶材料中的新成员,也是一种新型金属材料。这种合金被称之为金属玻璃,但不是因为它像玻璃那样脆而透明,而是因为组成这种金属的内部原子排列像玻璃一样是长程无序的,是一种玻璃态结构。本文介绍的金属玻璃的应用仅仅是冰山一角,金属玻璃重要的价值正在被科研工作者逐渐挖掘,期待将来金属玻璃带给我们更多惊喜吧!


相关文章

爱丁堡大学:合成硬度媲美金刚石的新材料

金刚石是天然矿物中硬度最高的物质,可用作研磨剂或钻头涂层。英国爱丁堡大学近日发布新闻公报说,该校研究人员参与的团队合成了硬度可以与金刚石相媲美的氮化碳化合物,有潜力成为具有广泛工业用途的多功能材料。2......

回顾:2023年Nature\Science上的锂电池成果

2023年Nature上的电池文章汇总1.固态电解质最新成果登上Science日本东京工业大学创新研究所全固态电池研究中心RyojiKanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成......

2023达摩院青橙奖获得者杨宗银,如何研制出的世界最小光谱仪

“肉眼所见的世界,并非真实的世界,只是红绿蓝三色在我们脑海中的投影。”1666年,牛顿发现太阳光通过棱镜的折射后可观察到更多光谱色,这个实验推动了光谱仪的诞生。凭借光谱仪这一工具,人类掌握一种新的精确......

大规格吉瓦级项目投建钙钛矿技术商业化进程再提速

钙钛矿技术的商业化进程继续提速。12月28日,记者从协鑫集团获悉,其旗下昆山协鑫光电材料有限公司(以下简称“协鑫光电”)总投资50亿元的2吉瓦钙钛矿生产线已于12月27日开工建设。据悉,该项目为全球首......

省重点实验室,精准“狙击”让癌细胞无处遁形

设计系列纳米酶,与光热治疗、光动力治疗、免疫治疗等结合,用于癌症、老年病等重大疾病的治疗;突破太阳能电池关键技术瓶颈,构建高能、低成本、高效率的全新有机太阳能电池体系,将有机太阳能电池效率快速提升至1......

化学所锂电池硅基负极研究取得进展

在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体......

首获成功,碳材料家族再添两位新成员

通过对两种分子实施“麻醉”和“手术”,同济大学材料科学与工程学院许维教授团队首次成功合成了分别由10个或14个碳原子组成的环型纯碳分子材料,碳材料家族再添两位新成员。近日,国际学术期刊《自然》在线发表......

PlasmaQuant®MS分析芯片制造过程中清洗液中的磷

在半导体行业需要应用ICP-MS监测芯片制造过程中的清洗液中磷的含量。磷的质荷比为31,会受到N15O16、Si28H1、N14O16H1等多原子离子的干扰,以至于背景信号特别高,检出限难以满足要求。......

PlasmaQuant®MS分析晶圆表面金属杂质

分析背景简介硅片是半导体制造业的基础材料,硅片表面及少量的金属污染都可能导致器件功能的失效,所以硅片表面金属杂质测试是不可或缺的步骤。VPD跟ICPMS联用检测硅片表面金属杂质是目前最常见的一种手段。......

有望成为新型半导体材料!中国科学家合成全新碳分子

碳材料家族又添2位新成员。通过对两种分子实施“麻醉”和“手术”,同济大学材料科学与工程学院许维教授团队首次成功精准合成了两种全新的碳分子材料(碳同素异形体),即芳香性环型碳C10和C14,并精细表征了......