发布时间:2019-08-02 23:12 原文链接: siRNADesignGuidelines

Using siRNA for gene silencing is a rapidly evolving tool in molecular biology. There are several methods for preparing siRNA, such as chemical synthesis, in vitro transcription, siRNA expression vectors, and PCR expression cassettes. Irrespective of which method one uses, the first step in designing a siRNA is to choose the siRNA target site. The guidelines below for choosing siRNA target sites are based on both the current literature, and on empirical observations by scientists at Ambion. Using these guidelines, approximately half of all siRNAs yield >50% reduction in target mRNA levels.

General Design Guidelines

If you prefer to design your own siRNAs, you can choose siRNA target sites in a variety of different organisms based on the following guidelines. Corresponding siRNAs can then be chemically synthesized, created by in vitro transcription, or expressed from a vector or PCR product.

1. Find 21 nt sequences in the target mRNA that begin with an AA dinucleotide.

Beginning with the AUG start codon of your transcript, scan for AA dinucleotide sequences. Record each AA and the 3' adjacent 19 nucleotides as potential siRNA target sites. 

This strategy for choosing siRNA target sites is based on the observation by Elbashir et al. (1) that siRNAs with 3' overhanging UU dinucleotides are the most effective. This is also compatible with using RNA pol III to transcribe hairpin siRNAs because RNA pol III terminates transcription at 4-6 nucleotide poly(T) tracts creating RNA molecules with a short poly(U) tail. 

In Elbashir's and subsequent publications, siRNAs with other 3' terminal dinucleotide overhangs have been shown to effectively induce RNAi. If desired, you may modify this target site selection strategy to design siRNAs with other dinucleotide overhangs, but it is recommended that you avoid G residues in the overhang because of the potential for the siRNA to be cleaved by RNase at single-stranded G residues.

2. Select 2-4 target sequences.

Research at Ambion has found that typically more than half of randomly designed siRNAs provide at least a 50% reduction in target mRNA levels and approximately 1 of 4 siRNAs provide a 75-95% reduction. Choose target sites from among the sequences identified in Step 1 based on the following guidelines:

  • Ambion researchers find that siRNAs with 30-50% GC content are more active than those with a higher G/C content.

  • Since a 4-6 nucleotide poly(T) tract acts as a termination signal for RNA pol III, avoid stretches of > 4 T's or A's in the target sequence when designing sequences to be expressed from an RNA pol III promoter.

  • Since some regions of mRNA may be either highly structured or bound by regulatory proteins, we generally select siRNA target sites at different positions along the length of the gene sequence. We have not seen any correlation between the position of target sites on the mRNA and siRNA potency.

  • Compare the potential target sites to the appropriate genome database (human, mouse, rat, etc.) and eliminate from consideration any target sequences with more than 16-17 contiguous base pairs of homology to other coding sequences. We suggest using BLAST, which can be found on the NCBI server at: 
    www.ncbi.nlm.nih.gov/BLAST.

3. Design appropriate controls.

A complete siRNA experiment should include a number of controls to ensure the validity of the data. The editors of Nature Cell Biology have recommended several controls (2). Two of these controls are:

  • A negative control siRNA with the same nucleotide composition as your siRNA but which lacks significant sequence homology to the genome. To design a negative control siRNA, scramble the nucleotide sequence of the gene-specific siRNA and conduct a search to make sure it lacks homology to any other gene.

  • Additional siRNA sequences targeting the same mRNA. Perhaps the best way to ensure confidence in RNAi data is to perform experiments, using a single siRNA at a time, with two or more different siRNAs targeting the same gene. Prior to these experiments, each siRNA should be tested to ensure that it reduces target gene expression by comparable levels.

Ambion's siRNA Target Finder

Use our online target finder to find potential sequences based on the design guidelines described above. Simply paste your mRNA sequence into the window and this program will scan your sequence for AA dinucleotides. A report is generated indicating the position of the AA dinucleotide, the 21 base target and the corresponding sense and antisense siRNA oligonucleotides. siRNA targets can then be sent directly to one of our kit-specific design tools or subjected to a BLAST search by clicking on the appropriate link below the target of interest.

Alternatively, the Whitehead Institute of Biomedical Research at MIT has a publicly available siRNA design tool that incorporates additional selection parameters and integrates BLAST searches of the human and mouse genome databases. See http://jura.wi.mit.edu/bioc/siRNAext/ (registration required).

Specific Guidelines for Designing siRNA Hairpins Encoded by siRNA Expression Vectors and siRNA Expression Cassettes

Researchers who initially reported the use of siRNA expression vectors to induce RNAi had different design criteria for their inserts encoding the expressed siRNA. Most of the designs had two inverted repeats separated by a short spacer sequence and ended with a string of T's that served as a transcription termination site. These designs produce an RNA transcript that is predicted to fold into a short hairpin siRNA as shown in Figure 1. The selection of siRNA target sequence, the length of the inverted repeats that encode the stem of a putative hairpin, the order of the inverted repeats, the length and composition of the spacer sequence that encodes the loop of the hairpin, and the presence or absence of 5'-overhangs, vary among different reports (3-11).

Figure 1 . Schematic of a Typical Hairpin siRNA Produced by an siRNA Expression Vector or an siRNA Expression Cassette and Its Relationship to the RNA Target Sequence.

 

Ambion's Recommended Procedure for siRNA Hairpin Design

The following recommendations for siRNA hairpin design and cloning strategy are made based on research by Ambion scientists. The first step in designing an appropriate insert is to choose the siRNA target site by following the steps described under "General Design Guidelines" above.

For screening, we typically test four siRNA sequences per target, spacing the siRNA sequences down the length of the gene sequence to reduce the chances of targeting a region of the mRNA that is either highly structured or bound by regulatory proteins. Because constructing and testing four siRNA expression plasmids per target is time-consuming, we find it much easier to screen potential siRNA sequences using PCR-derived siRNA expression cassettes (SECs). SECs are PCR products that include promoter and terminator sequences flanking a hairpin siRNA template. This screening strategy also permits the rapid identification of the best combination of promoter and siRNA sequence in the experimental system. SECs found to effectively elicit gene silencing can be readily cloned into a vector for long term studies. Ambion scientists have determined that sequences that function well as transfected siRNAs also function well as siRNAs that are expressed in vivo. The only exception is that siRNA sequences to be expressed in vivo should not contain a run of 4 or 5 A's or T's, as these can act as termination sites for Polymerase III.

For traditional cloning into pSilencer vectors, two DNA oligonucleotides that encode the chosen siRNA sequence are designed for insertion into the vector (Figures 2 and 3). In general, the DNA oligonucleotides consist of a 19-nucleotide sense siRNA sequence linked to its reverse complementary antisense siRNA sequence by a short spacer. Ambion scientists have successfully used a 9-nucleotide spacer (TTCAAGAGA), although other spacers can be designed. 5-6 T's are added to the 3' end of the oligonucleotide. In addition, for cloning into the pSilencer 1.0-U6 vector, nucleotide overhangs to the EcoR I and Apa I restriction sites are added to the 5' and 3' end of the DNA oligonucleotides, respectively (Figure 2). In contrast, for cloning into the pSilencer 2.0-U6, 2.1-U6, 3.0-H1, or 3.1-H1 vectors, nucleotide overhangs with BamH I and Hind III restriction sites are added to the 5' and 3' end of the DNA oligonucleotides, respectively (Figure 3). The resulting RNA transcript is expected to fold back and form a stem-loop structure comprising a 19 bp stem and 9 nt loop with 2-3 U's at the 3' end (Figure 1).

Figure 2. Insert Design for pSilencer 1.0-U6. This insert is specific for the pSilencer 1.0-U6 Vector and contains the appropriate 3' overhangs for directional cloning into this vector. The loop sequence and length can be varied as desired.

 

For cloning into the pSilencer adeno 1.0-CMV vector, DNA oligonucleotides with stem-loop structures are created similar to those of pSilencer 2.0 and 3.0 vectors described above. However, one notable exception is the absence of 5-6 T's from the 3'-end of the oligonucleotides for the CMV-based vector system since the transcription termination signal for the CMV-based vector system is provided by the SV40 polyA terminator. In addition, for cloning into the pSilencer adeno 1.0-CMV vector, nucleotide overhangs containing the Xho I and Spe I restriction sites are added to the 5' and 3' end of the DNA oligonucleotides, respectively (Figure 4). However, for cloning into the pSilencer 4.1-CMV vector, nucleotide overhangs containing the Bam H1 and Hind III restriction sites are added to the 5' and 3' end of the DNA oligonucleotides, respectively (Figure 5).



Figure 4. Insert Design for pSilencer™ adeno 1.0-CMV Vector. This insert design is specific for the pSilencer adeno 1.0-CMV vector and contains the appropriate overhangs for directional cloning into this vector. The loop sequence and length can be varied as desired.

 

Selection of siRNA Targets

In addition to the our own proprietary algorithm and our suggested procedure for selecting siRNA targets by scanning a mRNA sequence for AA dinucleotides and recording the 19 nucleotides immediately downstream of the AA, two other methods have been employed by other researchers. In the first method, the selection of the siRNA target sequence is purely empirically determined (4), as long as the target sequence starts with GG and does not share significant sequence homology with other genes as analyzed by BLAST search.

In the second report, a more elaborate method is employed to select the siRNA target sequences. This procedure exploits an observation that any accessible site in endogenous mRNA can be targeted for degradation by the synthetic oligodeoxyribonucleotide/RNase H method (5). Any accessible site identified in this fashion is then used as insert sequence in the U6 promoter-driven siRNA constructs.

Order of the Sense and Antisense Strands within the Hairpin siRNAs

A hairpin siRNA expression cassette is usually constructed to contain the sense strand of the target, followed by a short spacer, then the antisense strand of the target, in that order. One group of researchers has found that reversal of the order of sense and antisense strands within the siRNA expression constructs did not affect the gene silencing activities of the hairpin siRNA (6). In contrast, another group of researchers has found that similar reversal of order in another siRNA expression cassette caused partial reduction in the gene silencing activities of the hairpin siRNA (7). It is not clear what is responsible for this difference in observation. At the present time, it is still advisable to construct the siRNA expression cassette in the order of sense strand, short spacer, and antisense strand.

Length of the siRNA Stem

There appears to be some degree of variation in the length of nucleotide sequence being used as the stem of siRNA expression cassette. Several research groups including Ambion have used 19 nucleotides-long sequences as the stem of siRNA expression cassette (6-10). In contrast, other research groups have used siRNA stems ranging from 21 nucleotides-long (4-5) to 25-29 nucleotides-long (11). It is found that hairpin siRNAs with these various stem lengths all function well in gene silencing studies.

Length and Sequence of the Loop Linking Sense and Antisense Strands of Hairpin siRNA

Various research groups have reported successful gene silencing results using hairpin siRNAs with loop size ranging between 3 to 23 nucleotides (4, 6-9, 11). The following is a summary of loop size and specific loop sequences used by various research groups:

相关文章

科学团队开发铁蛋白靶向递送siRNA治疗脑胶质瘤新策略

siRNA能抑制特定致癌基因表达,展现出较好的抗肿瘤潜力。然而其临床应用面临多重障碍,如负电荷亲水性阻碍细胞摄取,溶酶体逃逸能力不足导致降解风险,肿瘤靶向性差以及易被肾脏快速清除。尤其在治疗脑胶质瘤时......

第三届磁性相关测量讲习班资深技术支持助力科研

分析测试百科网讯2019年10月10日,第三届磁性相关测量讲习班暨QuantumDesign中国子公司2019年华北区用户会在北京中科院物理所举办,由中国电子学会应用磁学分会主办,QuantumDes......

开发肽siRNA偶联物,向肝外组织定向递送siRNA疗法!

此次合作,将超越肝脏范畴,为多种肝外疾病开启siRNA治疗机会。行业领先的RNAi治疗公司Alnylam与行业领先的肽基药物发现公司PeptiDream近日宣布了一项许可及合作协议,发现和开发肽-si......

siRNA有望治疗ALS渐冻症

肌萎缩侧索硬化症(ALS)是一种渐进的神经退行性疾病,俗称渐冻症,患者上下运动神经元皆受累,导致神经元支配的肌肉出现肌无力、肌萎缩、震颤、痉挛等相关临床症状,病程多呈进行性发展,最后常由于呼吸麻痹而死......

siRNA降胆固醇药物inclisiran持久、显著降低LDLC!

诺华(Novartis)公布评估首创小干扰RNA(siRNA)降胆固醇药物inclisiran治疗成人高脂血症三项关键III期临床试验汇总数据的预先指定分析结果。这些数据在近日举行的美国心脏病学会年度......

常规剂型、系统给药siRNA显示动物疗效

《自然生物技术》杂志发表一篇由哈佛大学和麻州大学科学家的一个妊娠毒血症siRNA药物发现工作。作者根据溶解性FLT1(sFLT1,也称sVEGFR1)mRNA与膜上全长FLT1mRNA的区别找到选择性......

【分享】siRNA转染成功的主要关键

siRNA在RNA沉寂通道中起中心作用,是对特定信使RNA(mRNA)进行降解的指导要素,细胞转染实验中经常会遇到siRNA转染,下面介绍一下siRNA转染成功的主要关键点。图片来源于网络1.设计合成......

Cell子刊:siRNA纳米药物用于脑部疾病治疗研究综述

2018年2月5日,国际著名学术杂志《Cell》子刊《TrendsinBiotechnology》杂志在线发表了河南大学生命科学学院师冰洋教授课题组的综述论文,论文题为《Nanotechnology-......

同济大学杜建忠、西北师大卢小泉当选英国皇家化学会士

导读:近日,同济大学材料科学与工程学院杜建忠教授、西北师范大学化学化工学院卢小泉教授入选英国皇家化学会会士(FellowoftheRoyalSocietyofChemistry,FRSC),北京师范大......

siRNA联合纳米技术为难治型乳腺癌重拳出击

据世卫组织2013最新报告,乳腺癌的发病率目前在西方发达国家属于高位稳定的状态。全球年发病新增乳腺癌患者在130万左右,死亡率在欧美国家占到女性的16%,发病率和死亡率占女性第一位。对于我国来说,乳腺......

Loop Size (# of Nucleotides)

Specific Loop Sequence

Reference

3

AUG

4

3

CCC

7

4

UUCG

5

5

CCACC

7

6

CTCGAG

2

6

AAGCUU

2

7

CCACACC

7

9

UUCAAGAGA

6