发布时间:2020-02-11 18:01 原文链接: 新基因定义下一场“绿色革命”

  “中国三大主要粮食作物的化肥利用率只有39.2%,绝大部分释放到土地和空气中,造成环境污染。如何‘减肥增效’是当前农业可持续发展亟待解决的重大问题。” 中国科学院遗传与发育生物学研究所研究员傅向东在接受《中国科学报》采访时说。

  2月7日,《科学》杂志以封面文章的形式,发表傅向东团队关于赤霉素和氮素协同调控植物生长发育新机制的研究成果。该成果将为“少投入、多产出”的绿色高产高效农作物新品种培育提供一种新的育种策略,这预示着一场新的“绿色革命”即将到来。

  突破“绿色革命”瓶颈

  上世纪60年代以来,以半矮秆小麦和水稻新品种培育为标志的“绿色革命”带来了全球粮食产量大幅增长,解决了世界范围内人口快速增长引发的粮食危机。

  40多年后,植物分子生物学和基因组学的发展,揭开了“绿色革命”的本质——植物激素赤霉素的生物学效应。

  赤霉素合成途径受阻,实现了植株半矮化、抗倒伏的高产目标。

  傅向东告诉《中国科学报》:“然而,此类品种却对氮肥不敏感,需要施用更多的氮肥才能获得高产。”

  持续大量的氮肥投入不仅增加了种植成本,还导致了日益严重的环境污染。

  如何突破“绿色革命”的瓶颈,成了傅向东心中一根紧绷的弦。

  新基因启发育种新途径

  傅向东介绍,团队以水稻分蘖对氮素的响应为切入点,找到了赤霉素和氮素协同调控水稻生长发育的关键基因NGR5,并阐明了NGR5通过表观遗传调控水稻分蘖数等农艺性状氮素响应的分子机制。

  进一步研究发现,在当前主栽品种中,提高NGR5表达量,不仅能提高氮肥利用效率,而且能保持优良的半矮化和高产特性,使水稻在减施氮肥条件下获得更高的产量,为培育高产且高效的“绿色革命”新品种奠定基础。

  傅向东介绍,研究成果很大的突破点是,NGR5不仅是植物响应氮素的正调控因子,还是赤霉素信号传导途径中一个新的重要蛋白。赤霉素通过促进NGR5蛋白降解,导致全基因组甲基化修饰降低,进而促进靶基因表达,实现赤霉素调控植物生长发育。

  此外,发现新的基因后,就可以把多个优异等位基因聚合在一起,提供一个能够明显减少氮肥投入,又增加产量的新育种策略。“将来可以培育出新的品种,把60年前的矮化育种缺陷弥补上,实现高产高效协同改良的育种目标。”傅向东说。

  增产与减施的“双赢”

  “通过分子设计育种手段,培育高产和氮肥高效利用协同改良的作物新品种,对保障粮食安全和农业可持续发展至关重要。”傅向东正在与中科院合肥物质研究院、牛津大学等多家单位合作,聚合多个优异等位基因,培育“少投入、多产出”的绿色高产高效新品种。

  然而,植物氮素代谢及信号传导分子机制和调控网络的研究,绝大多数仍集中在模式植物拟南芥中;在众多已克隆和鉴定的基因中,在作物产量和氮肥利用效率协同改良方面具有育种应用价值的基因资源还非常有限。因此,如何在减少氮肥施用的同时实现作物产量的持续提升,仍然任重而道远。

  傅向东介绍,团队未来的研究方向有三个方面。一是综合利用各种组学手段,并结合计算生物学、合成生物学、人工智能等新兴技术,系统解析氮代谢、碳代谢和植物生长发育协同调控机制。

  二是,充分利用野生资源、农家种、主栽品种等种质材料,通过GWAS分析、QTL定位和图位克隆等方法,系统解析控制氮肥高效利用的关键基因及其调控网络,挖掘优异等位基因或者利用基因编辑技术创制新的等位变异,获得能协同提高作物产量和氮肥高效利用的分子模块。

  三是,利用时空特异启动子对关键基因进行表达模式改造,通过多基因聚合技术导入当前主栽品种中,以培育 “少投入、多产出”绿色高产高效农作物新品种。


相关文章

Brain:科学家识别出参与阿尔兹海默病中神经元易感性发生的关键基因

神经变性疾病早期阶段的特征是离散脑细胞群中蛋白质的积累以及这些脑细胞的退化,对于大多数疾病而言,这种选择性的易感性模式是无法解释的,但其对于病理性机制或许能提供重要的见解。阿尔兹海默病是世界上主要的痴......

2024年中国基因编辑技术发展现状及趋势分析CRISPR/Cas优势明显

行业主要上市公司:金斯瑞(HK.1548)、凯赛生物(688065.SH)、华熙生物(688363.SH)、华恒生物(688639.SH)、川宁生物(301301.SZ)等本文核心数据:ZFNs技术;......

厚积薄发我国科学家揭开表观遗传“神秘面纱”

长期以来,人们普遍认为,脱氧核糖核酸(DNA)决定了生物体的全部表型。但问题来了,在相同环境中成长的同卵双胞胎,身高、肤色、性格、健康状况等并非完全相同,这是为什么?为了揭开表观遗传的“神秘面纱”,科......

基因解码揭示人类无尾之谜

纽约大学格罗斯曼医学院(NYUGrossmanSchoolofMedicine)的研究人员进行的一项新研究表明,我们远古祖先的基因变化可以部分解释为什么人类不像猴子那样有尾巴。这项研究成果最近发表在《......

人与猿类如何在进化中“甩掉”尾巴

猴子有尾巴,而人类和猿类的尾巴却在进化中消失了,是什么在其中起了关键作用?《自然》28日发表的一篇论文,报道了人类和猿类演化掉尾巴的遗传学基础。灵长类动物尾部表型的系统发育树(Ma表示百万年前)。图片......

一步到位沉默一个小鼠胆固醇基因

意大利科学家在一项小鼠研究中展示了无需永久性基因组编辑,也可对一个控制胆固醇水平的基因做到长效抑制。这一靶向表观遗传沉默(不用直接改变DNA序列就可改变基因功能)的效果在小鼠中持续近1年,令循环胆固醇......

安捷伦一季度营收缩水5.6%,仍稳坐16.6亿美元大关

2月27日,安捷伦科技公司(纽约证券交易所代码:A)公布截至2024年1月31日的2024财年第一季度财报。第一季度营收为16.6亿美元,与2023年第一季度相比下降5.6%,核心营收(1)下降6.4......

多样化菌群共存现象有了新解释

近日,中国科学院深圳先进技术研究院合成生物学研究所副研究员王腾团队在《自然—通讯》发表研究成果。该研究从理论上揭示了微生物群落中广泛存在的水平基因流动可以帮助竞争性微生物群体突破物种多样性“极限”,促......

与DNA损伤相关的145个基因“现形”

研究示意图。图片来源:《自然》杂志据最新一期《自然》杂志报道,通过对近1000只转基因小鼠开展研究,英国科学家发现了100多个与DNA损伤有关的关键基因。这项研究为开发癌症和神经退行性疾病个性化疗法提......

关节炎滑膜组织基因表达调控图谱,揭示关节炎风险位点的功能特征

关节炎是一种常见的关节病变,主要表现为滑膜增生、软骨变性及软骨下骨增生,造成关节功能丧失和生活质量下降,在60岁以上人群发病率超过50%,全球范围内有数亿人受到影响。全基因组关联研究(Genome-w......